P-adic Spaces of Continuous Functions I
Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 109-133

Voir la notice de l'article provenant de la source Numdam

Properties of the so called θ o -complete topological spaces are investigated. Also, necessary and sufficient conditions are given so that the space C(X,E) of all continuous functions, from a zero-dimensional topological space X to a non-Archimedean locally convex space E, equipped with the topology of uniform convergence on the compact subsets of X to be polarly barrelled or polarly quasi-barrelled.

DOI : 10.5802/ambp.242
Classification : 46S10, 46G10
Keywords: Non-Archimedean fields, zero-dimensional spaces, locally convex spaces

Katsaras, Athanasios 1

1 Department of Mathematics University of Ioannina Ioannina, 45110 Greece
@article{AMBP_2008__15_1_109_0,
     author = {Katsaras, Athanasios},
     title = {P-adic {Spaces} of {Continuous} {Functions} {I}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {109--133},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {15},
     number = {1},
     year = {2008},
     doi = {10.5802/ambp.242},
     zbl = {1158.46050},
     mrnumber = {2418016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/ambp.242/}
}
TY  - JOUR
AU  - Katsaras, Athanasios
TI  - P-adic Spaces of Continuous Functions I
JO  - Annales mathématiques Blaise Pascal
PY  - 2008
SP  - 109
EP  - 133
VL  - 15
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://geodesic.mathdoc.fr/articles/10.5802/ambp.242/
DO  - 10.5802/ambp.242
LA  - en
ID  - AMBP_2008__15_1_109_0
ER  - 
%0 Journal Article
%A Katsaras, Athanasios
%T P-adic Spaces of Continuous Functions I
%J Annales mathématiques Blaise Pascal
%D 2008
%P 109-133
%V 15
%N 1
%I Annales mathématiques Blaise Pascal
%U http://geodesic.mathdoc.fr/articles/10.5802/ambp.242/
%R 10.5802/ambp.242
%G en
%F AMBP_2008__15_1_109_0
Katsaras, Athanasios. P-adic Spaces of Continuous Functions I. Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 109-133. doi: 10.5802/ambp.242

Cité par Sources :