Are linear algorithms always good for linear problems?
Aequationes mathematicae, Tome 31 (1986), pp. 202-212.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : complexity, information operator, Laplace transform inversion, linear optimal error algorithms, mildly nonlinear algorithm
@article{AM2_1986__31_137159,
     author = {H. Wozniakowski and Arthur G. Werschulz},
     title = {Are linear algorithms always good for linear problems?},
     journal = {Aequationes mathematicae},
     pages = {202--212},
     publisher = {mathdoc},
     volume = {31},
     year = {1986},
     zbl = {0603.65036},
     url = {http://geodesic.mathdoc.fr/item/AM2_1986__31_137159/}
}
TY  - JOUR
AU  - H. Wozniakowski
AU  - Arthur G. Werschulz
TI  - Are linear algorithms always good for linear problems?
JO  - Aequationes mathematicae
PY  - 1986
SP  - 202
EP  - 212
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AM2_1986__31_137159/
ID  - AM2_1986__31_137159
ER  - 
%0 Journal Article
%A H. Wozniakowski
%A Arthur G. Werschulz
%T Are linear algorithms always good for linear problems?
%J Aequationes mathematicae
%D 1986
%P 202-212
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AM2_1986__31_137159/
%F AM2_1986__31_137159
H. Wozniakowski; Arthur G. Werschulz. Are linear algorithms always good for linear problems?. Aequationes mathematicae, Tome 31 (1986), pp. 202-212. http://geodesic.mathdoc.fr/item/AM2_1986__31_137159/