Locally finite groups containing direct products of dihedral groups
Algebra i logika, Tome 63 (2024) no. 3, pp. 323-337

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $d$ be a fixed natural number. We prove the following: THEOREM. Let $G$ be a locally finite group saturated with groups from a set $\mathfrak{M}$ consisting of direct products of $d$ dihedral groups. Then $G$ is a direct product of $d$ groups of the form $B\leftthreetimes\langle v\rangle$, where $B$ is a locally cyclic group inverted by an involution $v$.
Keywords: locally finite group, direct products of dihedral groups, locally cyclic group, involution.
@article{AL_2024_63_3_a6,
     author = {A. A. Shlepkin},
     title = {Locally finite groups containing direct products of dihedral groups},
     journal = {Algebra i logika},
     pages = {323--337},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_3_a6/}
}
TY  - JOUR
AU  - A. A. Shlepkin
TI  - Locally finite groups containing direct products of dihedral groups
JO  - Algebra i logika
PY  - 2024
SP  - 323
EP  - 337
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_3_a6/
LA  - ru
ID  - AL_2024_63_3_a6
ER  - 
%0 Journal Article
%A A. A. Shlepkin
%T Locally finite groups containing direct products of dihedral groups
%J Algebra i logika
%D 2024
%P 323-337
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2024_63_3_a6/
%G ru
%F AL_2024_63_3_a6
A. A. Shlepkin. Locally finite groups containing direct products of dihedral groups. Algebra i logika, Tome 63 (2024) no. 3, pp. 323-337. http://geodesic.mathdoc.fr/item/AL_2024_63_3_a6/