Wielandt $\mathfrak{X}$-subgroups
Algebra i logika, Tome 63 (2024) no. 3, pp. 301-322
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak{X}$ be a nonempty class of finite groups closed under taking subgroups, homomorphic images, and extensions. We define the concept of a Wielandt $\mathfrak{X}$-subgroup in an arbitrary finite group. It generalizes the concept of a submaximal $\mathfrak{X}$-subgroup introduced by H. Wielandt and is key in the framework of a program proposed by Wielandt in 1979. One of the central objectives of the program is to overcome difficulties associated with the reduction to factors of a subnormal series within the natural problem of searching for maximal $\mathfrak{X}$-subgroups. Wielandt $\mathfrak{X}$-subgroups possess a number of properties unshareable by submaximal $\mathfrak{X}$-subgroups. There is a hope that, due to these additional properties, the use of Wielandt $\mathfrak{X}$-subgroups will open up new possibilities in realizing Wielandt's program.
Keywords:
Wielandt's program, finite group, maximal $\mathfrak{X}$-subgroup, submaximal $\mathfrak{X}$-subgroup, Wielandt $\mathfrak{X}$-subgroup.
@article{AL_2024_63_3_a5,
author = {D. O. Revin},
title = {Wielandt $\mathfrak{X}$-subgroups},
journal = {Algebra i logika},
pages = {301--322},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2024_63_3_a5/}
}
D. O. Revin. Wielandt $\mathfrak{X}$-subgroups. Algebra i logika, Tome 63 (2024) no. 3, pp. 301-322. http://geodesic.mathdoc.fr/item/AL_2024_63_3_a5/