Wielandt $\mathfrak{X}$-subgroups
Algebra i logika, Tome 63 (2024) no. 3, pp. 301-322

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{X}$ be a nonempty class of finite groups closed under taking subgroups, homomorphic images, and extensions. We define the concept of a Wielandt $\mathfrak{X}$-subgroup in an arbitrary finite group. It generalizes the concept of a submaximal $\mathfrak{X}$-subgroup introduced by H. Wielandt and is key in the framework of a program proposed by Wielandt in 1979. One of the central objectives of the program is to overcome difficulties associated with the reduction to factors of a subnormal series within the natural problem of searching for maximal $\mathfrak{X}$-subgroups. Wielandt $\mathfrak{X}$-subgroups possess a number of properties unshareable by submaximal $\mathfrak{X}$-subgroups. There is a hope that, due to these additional properties, the use of Wielandt $\mathfrak{X}$-subgroups will open up new possibilities in realizing Wielandt's program.
Keywords: Wielandt's program, finite group, maximal $\mathfrak{X}$-subgroup, submaximal $\mathfrak{X}$-subgroup, Wielandt $\mathfrak{X}$-subgroup.
@article{AL_2024_63_3_a5,
     author = {D. O. Revin},
     title = {Wielandt $\mathfrak{X}$-subgroups},
     journal = {Algebra i logika},
     pages = {301--322},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_3_a5/}
}
TY  - JOUR
AU  - D. O. Revin
TI  - Wielandt $\mathfrak{X}$-subgroups
JO  - Algebra i logika
PY  - 2024
SP  - 301
EP  - 322
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_3_a5/
LA  - ru
ID  - AL_2024_63_3_a5
ER  - 
%0 Journal Article
%A D. O. Revin
%T Wielandt $\mathfrak{X}$-subgroups
%J Algebra i logika
%D 2024
%P 301-322
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2024_63_3_a5/
%G ru
%F AL_2024_63_3_a5
D. O. Revin. Wielandt $\mathfrak{X}$-subgroups. Algebra i logika, Tome 63 (2024) no. 3, pp. 301-322. http://geodesic.mathdoc.fr/item/AL_2024_63_3_a5/