Wielandt $\mathfrak{X}$-subgroups
Algebra i logika, Tome 63 (2024) no. 3, pp. 301-322
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak{X}$ be a nonempty class of finite groups closed under taking subgroups, homomorphic images, and extensions. We define the concept of a Wielandt $\mathfrak{X}$-subgroup in an arbitrary finite group. It generalizes the concept of a submaximal $\mathfrak{X}$-subgroup introduced by H. Wielandt and is key in the framework of a program proposed by Wielandt in 1979. One of the central objectives of the program is to overcome difficulties associated with the reduction to factors of a subnormal series within the natural problem of searching for maximal $\mathfrak{X}$-subgroups. Wielandt $\mathfrak{X}$-subgroups possess a number of properties unshareable by submaximal $\mathfrak{X}$-subgroups. There is a hope that, due to these additional properties, the use of Wielandt $\mathfrak{X}$-subgroups will open up new possibilities in realizing Wielandt's program.
Keywords: Wielandt's program, finite group, maximal $\mathfrak{X}$-subgroup, submaximal $\mathfrak{X}$-subgroup, Wielandt $\mathfrak{X}$-subgroup.
@article{AL_2024_63_3_a5,
     author = {D. O. Revin},
     title = {Wielandt $\mathfrak{X}$-subgroups},
     journal = {Algebra i logika},
     pages = {301--322},
     year = {2024},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_3_a5/}
}
TY  - JOUR
AU  - D. O. Revin
TI  - Wielandt $\mathfrak{X}$-subgroups
JO  - Algebra i logika
PY  - 2024
SP  - 301
EP  - 322
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_3_a5/
LA  - ru
ID  - AL_2024_63_3_a5
ER  - 
%0 Journal Article
%A D. O. Revin
%T Wielandt $\mathfrak{X}$-subgroups
%J Algebra i logika
%D 2024
%P 301-322
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/AL_2024_63_3_a5/
%G ru
%F AL_2024_63_3_a5
D. O. Revin. Wielandt $\mathfrak{X}$-subgroups. Algebra i logika, Tome 63 (2024) no. 3, pp. 301-322. http://geodesic.mathdoc.fr/item/AL_2024_63_3_a5/

[1] C. Jordan, Traité des substitutions et des équations algébriques, Gauthier–Villars, Paris, 1870

[2] E. Galois, “Mémoire sur les conditions de résolubilité des équations par radicaux”, J. Math. Pures Appl. (Liouville), 11 (1846), 417–433

[3] M. Jordan, “Commentaire sur le Mémoire de Galois”, Comptes rendus, 60 (1865), 770–774

[4] H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute”, Finite groups (Santa Cruz Conf., 1979), Proc. Symp. Pure Math., 37, Am. Math. Soc., Providence, RI, 1980, 161–173

[5] H. Wielandt, “Zusammengesetzte Gruppen endlicher Ordnung, Vorles. Univ. Tübingen, 1963/64”, Mathematische Werke. Mathematical works, v. 1, Group theory, eds. B. Huppert and H. Schneider, Walter de Gruyter, Berlin, 1994, 607–655

[6] V. Go, D. O. Revin, “O maksimalnykh i submaksimalnykh ${\mathfrak X}$-podgruppakh”, Algebra i logika, 57:1 (2018), 14–42

[7] V. Go, D. O. Revin, “O svyazi mezhdu sopryazhennostyu maksimalnykh i submaksimalnykh ${\mathfrak X}$-podgrupp”, Algebra i logika, 57:3 (2018), 261–278

[8] W. Guo, D. O. Revin, E. P. Vdovin, “The reduction theorem for relatively maximal subgroups”, Bull. Math. Sci., 12:1 (2022), 2150001, 47 pp.

[9] V. Go, D. O. Revin, Kogda poisk otnositelno maksimalnykh podgrupp redutsiruetsya k faktorgruppam?, Izv. RAN. Ser. matem., 86:6 (2022), 79–100

[10] D. O. Revin, A. V. Zavarnitsine, “The behavior of $\pi$-submaximal subgroups under homomorphisms”, Commun. Algebra, 48:2 (2020), 702–707

[11] D. O. Revin, A. V. Zavarnitsine, “The behavior of $\pi$-submaximal subgroups under homomorphisms with $\pi$-separable kernels”, Sib. elektron. matem. izv., 17 (2020), 1155–1164 http://semr.math.nsc.ru/v17/p1155-1164.pdf

[12] D. O. Revin, A. V. Zavarnitsine, “Automorphisms of nonsplit extensions of $2$-groups by ${\rm PSL}_2(q)$”, J. Group Theory, 24:6 (2021), 1245–1261

[13] O. Hölder, “Bildung zusammengesetzter Gruppen”, Math. Ann., XLVI (1895), 321–422

[14] P. Hall, “A note on soluble groups”, J. Lond. Math. Soc., 3 (1928), 98–105

[15] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985

[16] D. Revin, S. Skresanov, A. Vasil'ev, “The Wielandt–Hartley theorem for submaximal ${\mathfrak{X}}$-subgroups”, Monatsh. Math., 193:1 (2020), 143–155

[17] B. Hartley, “A theorem of Sylow type for finite groups”, Math. Z., 122:4 (1971), 223–226

[18] P. Hall, G. Higman, “On the $p$-length of $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. Lond. Math. Soc., III. Ser., 6:1 (1956), 1–42

[19] W. Guo, D. O. Revin, A. V. Vasil'ev, “On embedding theorems for ${\mathfrak{X}}$-subgroups”, Arch. Math., 121:1 (2023), 11–21

[20] D. O. Revin, “O submaksimalnykh i epimaksimalnykh $\mathfrak{X}$-podgruppakh”, Algebra i logika, 58:6 (2019), 714–719

[21] P. Hall, “Theorems like Sylow's”, Proc. Lond. Math. Soc., III. Ser., 6 (1956), 286–304