Isomorphism of atomless Boolean algebras with distinguished ideal
Algebra i logika, Tome 63 (2024) no. 3, pp. 271-279
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algebraic, model-theoretic, and algorithmic theory of enriched Boolean algebras with distinguished ideals was developed in a series of papers by D. E. Pal'chunov, A. Touraille, P. E. Alaev, N. T. Kogabaev, and other authors. Here we study the problem on the number of countable Boolean algebras with distinguished ideals for the case when an algebra and its quotient with respect to a distinguished ideal are atomless. It is proved that, for this subclass, there exist continuum many such countable structures.
Keywords: isomorphism problem, Boolean algebra with finitely many distinguished ideals (I-algebra), density of ideal, quotient algebra with respect to ideal.
@article{AL_2024_63_3_a2,
     author = {S. S. Goncharov and J. Xiang},
     title = {Isomorphism of atomless {Boolean} algebras with distinguished ideal},
     journal = {Algebra i logika},
     pages = {271--279},
     year = {2024},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_3_a2/}
}
TY  - JOUR
AU  - S. S. Goncharov
AU  - J. Xiang
TI  - Isomorphism of atomless Boolean algebras with distinguished ideal
JO  - Algebra i logika
PY  - 2024
SP  - 271
EP  - 279
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_3_a2/
LA  - ru
ID  - AL_2024_63_3_a2
ER  - 
%0 Journal Article
%A S. S. Goncharov
%A J. Xiang
%T Isomorphism of atomless Boolean algebras with distinguished ideal
%J Algebra i logika
%D 2024
%P 271-279
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/AL_2024_63_3_a2/
%G ru
%F AL_2024_63_3_a2
S. S. Goncharov; J. Xiang. Isomorphism of atomless Boolean algebras with distinguished ideal. Algebra i logika, Tome 63 (2024) no. 3, pp. 271-279. http://geodesic.mathdoc.fr/item/AL_2024_63_3_a2/

[1] A. Tarski, “Arithmetisal classes and types of boolean algebras”, Bull. Am. Math. Soc., 55 (1949), 64

[2] Yu. L. Ershov, “Razreshimost elementarnoi teorii distributivnykh struktur s otnositelnymi dopolneniyami i teorii filtrov”, Algebra i logika, 3:3 (1964), 17–38

[3] Yu. L. Ershov, “Konstruktivnye modeli”, Izbrannye voprosy algebry i logiki, Nauka, Novosibirsk, 1973, 111–130

[4] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980

[5] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[6] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996

[7] A. S. Morozov, “O razreshimosti teorii bulevykh algebr s vydelennym idealom”, Sib. matem. zh., 23:1 (1982), 199–201

[8] S. P. Odintsov, “Bezatomnye idealy konstruktivnykh bulevykh algebr”, Algebra i logika, 23:3 (1984), 278–295

[9] D. E. Palchunov, “O nerazreshimosti teorii bulevykh algebr s vydelennym idealom”, Algebra i logika, 25:3 (1986), 326–346

[10] D. E. Palchunov, Schetno-kategorichnye bulevy algebry s vydelennymi idealami, Preprint No 12, In-t matem. SO AN SSSR, Novosibirsk, 1986, 48 pp.

[11] D. E. Pal'chunov, “Countably-categorical Boolean algebras with distinguished ideals”, Stud. Log., 46:2 (1987), 121–135

[12] D. E. Palchunov, “Konechno-aksiomatiziruemye bulevy algebry s vydelennymi idealami”, Algebra i logika, 26:4 (1987), 435–455

[13] D. E. Palchunov, “Pryamye slagaemye bulevykh algebr s vydelennymi idealami”, Algebra i logika, 31:5 (1992), 499–537

[14] D. E. Palchunov, “Prostye i schetno-nasyschennye bulevy algebry s vydelennymi idealami”, Matematicheskaya logika i teoriya algoritmov, Tr. In-ta matem. SO RAN, 25, 1993, 82–103

[15] D. E. Palchunov, “Teorii bulevykh algebr s vydelennymi idealami, ne imeyuschie prostoi modeli”, Matematicheskaya logika i teoriya algoritmov, Tr. In-ta matem. SO RAN, 25, 1993, 104–132

[16] P.-F. Jurie, A. Touraille, “Idéaux élémentairement équivalents dans une algébre booléienne”, C. R. Acad. Sci. Paris, Sér. I, Math., 299:10 (1984), 415–418

[17] A. Touraille, “Élimination des quantificateurs dans la théorie élementaire des algébres de Boole munies d'une famille d'idéaux distingués”, C. R. Acad. Sci. Paris, Sér. I, Math., 300:5 (1985), 125–128

[18] A. Touraille, “Théories d'algèbres de Boole munies d'idéaux distingués. I: Théories élémentaires”, J. Symb. Log., 52:4 (1987), 1027–1043

[19] A. Touraille, “Théories d'algèbres de Boole munies d'idéaux distingués. II”, J. Symb. Log., 55:3 (1990), 1192–1212

[20] P. E. Alaev, “Schetno kategorichnye i avtoustoichivye bulevy algebry s vydelennymi idealami”, Matem. tr., 11:1 (2008), 3–24

[21] P. E. Alaev, “Computably categorical Boolean algebras enriched by ideals and atoms”, Ann. Pure Appl. Logic, 163:5 (2012), 485–499

[22] N. T. Kogabaev, “Avtoustoichivost bulevykh algebr s vydelennym idealom”, Sib. matem. zh., 39:5 (1998), 1074–1084

[23] N. T. Kogabaev, “Universalnaya numeratsiya konstruktivnykh I-algebr”, Algebra i logika, 40:5 (2001), 561–579

[24] N. T. Kogabaev, “Slozhnost nekotorykh estestvennykh problem na klasse vychislimykh $I$-algebr”, Sib. matem. zh., 47:2 (2006), 352–360

[25] M. N. Leonteva, “Bulevy algebry elementarnoi kharakteristiki $(1,0,1)$ s vychislimymi mnozhestvom atomov i idealom Ershova–Tarskogo”, Algebra i logika, 50:2 (2011), 133–151

[26] M. N. Leonteva, “Otnositelno nasledstvenno vychislimye otnosheniya na bulevykh algebrakh s vydelennym mnozhestvom atomov”, Sib. matem. zh., 61:3 (2020), 622–633

[27] M. N. Gaskova, “Bulevy algebry, avtoustoichivye otnositelno $n$-razreshimykh predstavlenii”, Algebra i logika, 61:4 (2022), 443–460

[28] M. N. Gaskova, “Ob 1-razreshimosti bulevykh algebr s odnim vydelennym idealom”, Sib. matem. zh., 65:5 (2024), 852–862