@article{AL_2024_63_3_a1,
author = {M. M. Arslanov and I. I. Batyrshin and M. M. Yamaleev},
title = {$CEA$-operators and the {Ershov} hierarchy. {I}},
journal = {Algebra i logika},
pages = {248--270},
year = {2024},
volume = {63},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2024_63_3_a1/}
}
M. M. Arslanov; I. I. Batyrshin; M. M. Yamaleev. $CEA$-operators and the Ershov hierarchy. I. Algebra i logika, Tome 63 (2024) no. 3, pp. 248-270. http://geodesic.mathdoc.fr/item/AL_2024_63_3_a1/
[1] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv I”, Algebra i logika, 7:1 (1968), 47–74
[2] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv. II”, Algebra i logika, 7:4 (1968), 15–47
[3] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv. III”, Algebra i logika, 9:1 (1970), 34–51
[4] S. B. Cooper, Degrees of unsolvability, Ph. D. thesis, Leicester Univ., England, 1971
[5] C. G. Jockusch, jun., R. A. Shore, “Pseudo-jump operators. II: Transfinite iterations, hierarchies and minimal covers”, J. Symb. Log., 49:4 (1984), 1205–1236
[6] V. L. Selivanov, “Ob ierarkhii Ershova”, Sib. matem. zh., 26:1 (1985), 134–149
[7] M. M. Arslanov, G. L. LaForte, T. A. Slaman, “Relative enumerability in the difference hierarchy”, J. Symb. Logic, 63:2 (1998), 411–420
[8] I. I. Batyrshin, “Otnositelnaya perechislimost v ierarkhii Ershova”, Matem. zametki, 84:4 (2008), 506–515
[9] R .I. Soare, M. Stob, “Relative recursive enumerability”, Logic colloquium '81, Proc. Herbrand Symp. (Marseille, 1981), Stud. Logic Found. Math., 107, North-Hollad, 1982, 299–324
[10] M. M. Arslanov, S. Lempp, R. A. Shore, “Interpolating $d$-r.e. and REA degrees between r. e. degrees”, Ann. Pure Appl. Logic, 78:1-3 (1996), 29–56
[11] M. M. Arslanov, “The Ershov hierarchy”, Computability in context. Computation and logic in the real world, eds. S. B. Cooper et al., Imperial College Press, London, 2011, 49–100
[12] M. M. Arslanov, I. I. Batyrshin, M. M. Yamaleev, “$CEA$-operatory i ierarkhiya Ershova. II”, Algebra i logika, 63:4 (2024)
[13] M. Bickford, C. Mills, Lowness properties of r.e. sets, unpublished manuscript, UW Madison, 1982
[14] H. G. Carstens, “$\Delta^0_2$-Mengen”, Arch. Math. Logik Grundlagenforsch., 18 (1976), 55–65
[15] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspect. Math. Log., Omega Series, Springer-Verlag, Berlin etc., 1987
[16] R. G. Downey, D. R. Hirschfeldt, Algorithmic Randomness and Complexity, Theory and Applications of Computability, Springer, New York, 2010