$CEA$-operators and the Ershov hierarchy. I
Algebra i logika, Tome 63 (2024) no. 3, pp. 248-270

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the relationship between the $CEA$-hierarchy and the Ershov hierarchy in $\Delta_2^0$ Turing degrees. A degree $\mathbf c$ is called a $CEA(\mathbf a)$ if ${\mathbf c}$ is computably enumerable in ${\mathbf a}$, and $\mathbf a\leq\mathbf c$. Soare and Stob [Logic colloquium '81, Proc. Herbrand Symp. (Marseille, 1981) (Stud. Logic Found. Math., 107), North-Hollad, 1982, 299—324] proved that for a noncomputable low c.e. degree ${\mathbf a}$ there exists a $CEA(\mathbf a)$ that is not c.e. Later, Arslanov, Lempp, and Shore [Ann. Pure Appl. Logic, 78, Nos. 1-3 (1996), 29—56] formulated the problem of describing pairs of degrees ${\mathbf a}{\mathbf e}$ such that there exists a $CEA(\mathbf a)$ $2$-c.e. degree ${\mathbf d}\leq{\mathbf e}$ which is not c.e. Since then the question has remained open as to whether a $CEA(\mathbf a)$ degree in the sense of Soare and Stob can be made $2$-c.e. Here we answer this question in the negative, solving it in a stronger formulation: there exists a noncomputable low c.e. degree ${\mathbf a}$ such that any $CEA(\mathbf a)$ $\omega$-c.e. degree is c.e. Also possible generalizations of the result obtained are discussed, as well as various issues associated with the problem mentioned.
Keywords: $cEA$-hierarchy, ershov hierarchy, turing degree.
@article{AL_2024_63_3_a1,
     author = {M. M. Arslanov and I. I. Batyrshin and M. M. Yamaleev},
     title = {$CEA$-operators and the {Ershov} hierarchy. {I}},
     journal = {Algebra i logika},
     pages = {248--270},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_3_a1/}
}
TY  - JOUR
AU  - M. M. Arslanov
AU  - I. I. Batyrshin
AU  - M. M. Yamaleev
TI  - $CEA$-operators and the Ershov hierarchy. I
JO  - Algebra i logika
PY  - 2024
SP  - 248
EP  - 270
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_3_a1/
LA  - ru
ID  - AL_2024_63_3_a1
ER  - 
%0 Journal Article
%A M. M. Arslanov
%A I. I. Batyrshin
%A M. M. Yamaleev
%T $CEA$-operators and the Ershov hierarchy. I
%J Algebra i logika
%D 2024
%P 248-270
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2024_63_3_a1/
%G ru
%F AL_2024_63_3_a1
M. M. Arslanov; I. I. Batyrshin; M. M. Yamaleev. $CEA$-operators and the Ershov hierarchy. I. Algebra i logika, Tome 63 (2024) no. 3, pp. 248-270. http://geodesic.mathdoc.fr/item/AL_2024_63_3_a1/