Integral classification of endomorphisms of an arbitrary algebra with finitary operations
Algebra i logika, Tome 63 (2024) no. 1, pp. 58-76
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a bipolar classification with index $j$ for endomorphisms of an arbitrary $n$-groupoid with $n>1$, where $j=1,2,\ldots,n$. The classifications of endomorphisms constructed generalize the bipolar classification of endomorphisms of an arbitrary groupoid (i.e., a $2$-groupoid) introduced previously. Using a left bipolar classification of endomorphisms of an $n$-groupoid (a particular case of the obtained classifications), we succeed in constructing an integral classification of endomorphisms of an arbitrary algebra (i.e., a structure without relations) with finitary operations.
Keywords: integral classification, bipolar classification, algebra.
Mots-clés : endomorphism, groupoid
@article{AL_2024_63_1_a4,
     author = {A. V. Litavrin},
     title = {Integral classification of endomorphisms of an arbitrary algebra with finitary operations},
     journal = {Algebra i logika},
     pages = {58--76},
     year = {2024},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_1_a4/}
}
TY  - JOUR
AU  - A. V. Litavrin
TI  - Integral classification of endomorphisms of an arbitrary algebra with finitary operations
JO  - Algebra i logika
PY  - 2024
SP  - 58
EP  - 76
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_1_a4/
LA  - ru
ID  - AL_2024_63_1_a4
ER  - 
%0 Journal Article
%A A. V. Litavrin
%T Integral classification of endomorphisms of an arbitrary algebra with finitary operations
%J Algebra i logika
%D 2024
%P 58-76
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/AL_2024_63_1_a4/
%G ru
%F AL_2024_63_1_a4
A. V. Litavrin. Integral classification of endomorphisms of an arbitrary algebra with finitary operations. Algebra i logika, Tome 63 (2024) no. 1, pp. 58-76. http://geodesic.mathdoc.fr/item/AL_2024_63_1_a4/

[1] L. M. Gluskin, “Pozitsionnye operativy”, Matem. sb., 68:3 (1965), 444–472

[2] S. S. Davidov, “Svobodnye kommutativnye medialnye n-arnye gruppoidy”, Diskretnaya matem., 27:1 (2015), 34–43

[3] S. S. Davidov, “O strukture medialnykh delimykh n-arnykh gruppoidov”, Matem. zametki, 104:1 (2018), 33–44 | MR

[4] A. Rattana, R. Chinram, “Applications of neutrosophic n-structures in n-ary groupoids”, Eur. J. Pure Appl. Math., 13:2 (2020), 200–215 | MR

[5] A. V. Litavrin, “On Anti-endomorphisms of Groupoids”, The Bull. Irkutsk State Univ., Ser. Math., 44 (2023), 82–97 | DOI | MR

[6] A. V. Litavrin, “O poelementnom opisanii monoida vsekh endomorfizmov proizvolnogo gruppoida i odnoi klassifikatsii endomorfizmov gruppoida”, Trudy In-ta matem. mekh. UrO RAN, 29, no. 1, 2023, 143–159 | DOI | MR

[7] V. M. Petechuk, “Avtomorfizmy matrichnykh grupp nad kommutativnymi koltsami”, Matem. sb., 117:4 (1982), 534–547 | MR

[8] E. Abe, “Automorphisms of Chevalley groups over commutative rings”, Algebra Analiz, 5:2 (1993), 74–90 | MR

[9] V. M. Levchuk, “Avtomorfizmy unipotentnykh podgrupp grupp Shevalle”, Algebra i logika, 29:3 (1990), 315–338 | MR

[10] D. G. Khramtsov, “Endomorfizmy grupp avtomorfizmov svobodnykh grupp”, Algebra i logika, 44:2 (2005), 211–237 | MR

[11] V. M. Levchuk, G. S. Suleimanova, “Automorphisms and normal structure of unipotent subgroups of finitary Chevalle groups”, Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), 118–127 | DOI | MR

[12] S. G. Kolesnikov, “Automorphisms of Sylow p-subgroups of Chevalley groups over p-primary residue rings of integers”, J. Math. Sci. (New York), 152:2 (2008), 220–246 | DOI | MR

[13] E. I. Bunina, “Automorphisms of Chevalley groups of types $A_l$, $D_l$, $E_l$ over local rings without 1/2”, J. Math. Sci. (New York), 169:5 (2009), 589–613 | DOI | MR

[14] E. I. Bunina, “Automorphisms of Chevalley groups of type $F_4$ over local rings with 1/2”, J. Algebra, 323:8 (2010), 2270–2289 | DOI | MR

[15] E. A. Khalezov, “Avtomorfizmy matrichnykh polugrupp”, Dokl. AN SSSR, 96:2 (1954), 245–248 | MR

[16] V. V. Nemiro, “Endomorfizmy polugrupp obratimykh neotritsatelnykh matrits nad uporyadochennymi assotsiativnymi koltsami”, Vestn. Mosk. un-ta, Ser. 1. Matem. mekh., 2020, no. 5, 3–8 | MR

[17] E. I. Bunina, K. Sosov, “Endomorfizmy polugrupp neotritsatelnykh obratimykh matrits poryadka dva nad kommutativnymi uporyadochennymi koltsami”, Fundam. prikl. matem., 23:4 (2021), 39–53 | MR

[18] E. I. Bunina, P. P Semenov, “Avtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi elementami nad kommutativnymi chastichno uporyadochennymi koltsami”, Fundam. prikl. matem., 14:2 (2008), 69–100

[19] P. P. Semenov, “Endomorfizmy polugrupp obratimykh neotritsatelnykh matrits nad uporyadochennymi koltsami”, Fundam. prikl. matem., 17:5 (2012), 165–178

[20] Yu. V. Zhuchok, “Polugruppy endomorfizmov nekotorykh svobodnykh proizvedenii”, Fundam. prikl. matem., 17:3 (2012), 51–60

[21] E. A. Khalezov, “Avtomorfizmy primitivnykh kvazigrupp”, Matem. sb., 61:3 (1961), 329–342

[22] G. V. Timofeenko, “Gruppa avtomorfizmov konechno-opredelennykh kvazigrupp”, Matem. zametki, 37:5 (1985), 617–626 | MR

[23] A. Kh. Tabarov, “Gomomorfizmy i endomorfizmy lineinykh i alineinykh kvazigrupp”, Algebra i logika, 19:2 (2007), 67–73 | MR

[24] D. Hobby, D. Silberger, and S. Silberger, “Automorphism groups of finite groupoids”, Algebra Univers., 64 (2002), 117–136 | MR

[25] A. V. Litavrin, “Endomorfizmy konechnykh kommutativnykh gruppoidov, svyazannykh s mnogosloinymi neironnymi setyami pryamogo raspredeleniya”, Trudy In-ta matem. mekh. UrO RAN, 27, no. 1, 2021, 130–145 | DOI | MR

[26] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR