Groups with restrictions on normal subgroups
Algebra i logika, Tome 63 (2024) no. 1, pp. 3-14
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that if $G$ is a group without elements of order $2$, and the normal closure of every $2$-generated subgroup of $G$ is a nilpotent group of class at most $3$, then $G$ will be a nilpotent group of class at most $4$. It is also shown that the restriction on second-order elements cannot be lifted.
Keywords: nilpotent group, normal closure of subgroup, Levi class, variety, quasivariety.
@article{AL_2024_63_1_a0,
     author = {A. I. Budkin},
     title = {Groups with restrictions on normal subgroups},
     journal = {Algebra i logika},
     pages = {3--14},
     year = {2024},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_1_a0/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Groups with restrictions on normal subgroups
JO  - Algebra i logika
PY  - 2024
SP  - 3
EP  - 14
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_1_a0/
LA  - ru
ID  - AL_2024_63_1_a0
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Groups with restrictions on normal subgroups
%J Algebra i logika
%D 2024
%P 3-14
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/AL_2024_63_1_a0/
%G ru
%F AL_2024_63_1_a0
A. I. Budkin. Groups with restrictions on normal subgroups. Algebra i logika, Tome 63 (2024) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/AL_2024_63_1_a0/

[1] L. C. Kappe, “On Levi-formations”, Arch. Math., 23 (1972), 561–572 | DOI | MR

[2] F. W. Levi, “Groups in which the commutator operation satisfies certain algebraic conditions”, J. Indian Math. Soc., 6 (1942), 87–97 | MR

[3] L. C. Kappe, R. F. Morse, “Levi-properties in metabelian groups”, Contemp. Math., 109, 1990, 59–72 | DOI | MR

[4] L. C. Kappe, W. P. Kappe, “Metabelian Levi-formations”, Arch. Math., 25 (1974), 454–462 | DOI | MR

[5] R. F. Morse, “Levi-properties generated by varieties”, The mathematical legacy of Wilhelm Magnus. Groups, geometry and special functions, Conf. on the legacy of Wilhelm Magnus (May 1-3, 1992, Polytechnic Univ. Brooklyn, NY, USA), Contemp. Math., 169, eds. W. Abikoff et al., Am. Math. Soc., Providence, RI, 1994, 467–474 | DOI | MR

[6] A. I. Budkin, “Kvazimnogoobraziya Levi”, Sib. matem. zh., 40:2 (1999), 266–270 | MR

[7] A. I. Budkin, L. V. Taranina, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Sib. matem. zh., 41:2 (2000), 270–277 | MR

[8] A. I. Budkin, “O klassakh Levi, porozhdennykh nilpotentnymi gruppami”, Algebra i logika, 39:6 (2000), 635–647 | MR

[9] V. V. Lodeischikova, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Izv. Alt. gos. un-ta, 2009, no. 1(61), 26–29

[10] V. V. Lodeischikova, “O klassakh Levi, porozhdennykh nilpotentnymi gruppami”, Sib. matem. zh., 51:6 (2010), 1359–1366 | MR

[11] V. V. Lodeischikova, “O kvazimnogoobraziyakh Levi eksponenty $p^s$”, Algebra i logika, 50:1 (2011), 26–41 | MR

[12] V. V. Lodeischikova, “O klasse Levi, porozhdennom kvazimnogoobraziem nilpotentnykh grupp”, Algebra i logika, 58:4 (2019), 486–499 | MR

[13] S. A. Shakhova, “Ob aksiomaticheskom range klassov Levi”, Algebra i logika, 57:5 (2018), 587–600 | MR

[14] S. A. Shakhova, “The axiomatic rank of the Levi class generated by the almost Abelian quasivarieties of nilpotent groups”, Lobachevskii J. Math., 17:9 (2020), 1680–1683 | DOI | MR

[15] S. A. Shakhova, “Klassy Levi kvazimnogoobrazii grupp s kommutantom eksponenty $p$”, Algebra i logika, 60:5 (2021), 510–524 | MR

[16] V. V. Lodeischikova, S. A. Shakhova, “Klassy Levi kvazimnogoobrazii nilpotentnykh grupp eksponenty $p^s$”, Algebra i logika, 61:1 (2022), 77–92

[17] A. I. Budkin, “Operator $L_n$ na kvazimnogoobraziyakh universalnykh algebr”, Sib. matem. zh., 60:4 (2019), 724–733 | MR

[18] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969

[19] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR

[20] L. C. Kappe, W. P. Kappe, “On three-Engel groups”, Bull. Austral. Math. Soc., 7 (1972), 391–405 | DOI | MR

[21] M. Kholl, Teoriya grupp, IL, M., 1962

[22] K. W. Weston, “$ZA$-groups which satisfy the $m$-th Engel condition”, Illinois J. Math., 8 (1964), 458–472 | DOI | MR