Existence of independent quasi-equational bases. II
Algebra i logika, Tome 62 (2023) no. 6, pp. 762-785

Voir la notice de l'article provenant de la source Math-Net.Ru

If a certain condition holds for a quasivariety $\mathbf{K}$ then $\mathbf{K}$ contains continuum many subquasivarieties having a finitely partitionable $\omega$-independent quasi-equational basis relative to $\mathbf{K}$. This is true, in particular, for each almost $ff$-universal quasivariety $\mathbf{K}$.
Keywords: quasivariety, independent quasi-equational basis, $ff$-universal quasivariety.
@article{AL_2023_62_6_a3,
     author = {M. V. Schwidefsky},
     title = {Existence of independent quasi-equational bases. {II}},
     journal = {Algebra i logika},
     pages = {762--785},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_6_a3/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - Existence of independent quasi-equational bases. II
JO  - Algebra i logika
PY  - 2023
SP  - 762
EP  - 785
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_6_a3/
LA  - ru
ID  - AL_2023_62_6_a3
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T Existence of independent quasi-equational bases. II
%J Algebra i logika
%D 2023
%P 762-785
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_6_a3/
%G ru
%F AL_2023_62_6_a3
M. V. Schwidefsky. Existence of independent quasi-equational bases. II. Algebra i logika, Tome 62 (2023) no. 6, pp. 762-785. http://geodesic.mathdoc.fr/item/AL_2023_62_6_a3/