Existence of independent quasi-equational bases. II
Algebra i logika, Tome 62 (2023) no. 6, pp. 762-785
Voir la notice de l'article provenant de la source Math-Net.Ru
If a certain condition holds for a quasivariety $\mathbf{K}$ then $\mathbf{K}$ contains continuum many subquasivarieties having a finitely partitionable $\omega$-independent quasi-equational basis relative to $\mathbf{K}$. This is true, in particular, for each almost $ff$-universal quasivariety $\mathbf{K}$.
Keywords:
quasivariety, independent quasi-equational basis, $ff$-universal quasivariety.
@article{AL_2023_62_6_a3,
author = {M. V. Schwidefsky},
title = {Existence of independent quasi-equational bases. {II}},
journal = {Algebra i logika},
pages = {762--785},
publisher = {mathdoc},
volume = {62},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2023_62_6_a3/}
}
M. V. Schwidefsky. Existence of independent quasi-equational bases. II. Algebra i logika, Tome 62 (2023) no. 6, pp. 762-785. http://geodesic.mathdoc.fr/item/AL_2023_62_6_a3/