Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2023_62_6_a1, author = {A. -M. Liu and Zh. Wang and D. O. Revin}, title = {Toward a sharp {Baer--Suzuki} theorem for the $\pi$-radical: unipotent elements of groups of {Lie} type}, journal = {Algebra i logika}, pages = {708--741}, publisher = {mathdoc}, volume = {62}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2023_62_6_a1/} }
TY - JOUR AU - A. -M. Liu AU - Zh. Wang AU - D. O. Revin TI - Toward a sharp Baer--Suzuki theorem for the $\pi$-radical: unipotent elements of groups of Lie type JO - Algebra i logika PY - 2023 SP - 708 EP - 741 VL - 62 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2023_62_6_a1/ LA - ru ID - AL_2023_62_6_a1 ER -
%0 Journal Article %A A. -M. Liu %A Zh. Wang %A D. O. Revin %T Toward a sharp Baer--Suzuki theorem for the $\pi$-radical: unipotent elements of groups of Lie type %J Algebra i logika %D 2023 %P 708-741 %V 62 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2023_62_6_a1/ %G ru %F AL_2023_62_6_a1
A. -M. Liu; Zh. Wang; D. O. Revin. Toward a sharp Baer--Suzuki theorem for the $\pi$-radical: unipotent elements of groups of Lie type. Algebra i logika, Tome 62 (2023) no. 6, pp. 708-741. http://geodesic.mathdoc.fr/item/AL_2023_62_6_a1/
[1] N. Yan, Chzh. U, D. O. Revin, E. P. Vdovin, “O tochnoi teoreme Bera–Suzuki dlya $\pi$-radikala konechnoi gruppy”, Matem. sb., 214:1 (2023), 113–154 | DOI | MR | Zbl
[2] N. Yang, D. O. Revin, E. P. Vdovin, “Baer–Suzuki theorem for the $\pi$-radical”, Isr. J. Math., 245:1 (2021), 173–207 | DOI | MR | Zbl
[3] R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133:3 (1957), 256–270 | DOI | MR | Zbl
[4] M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. Math. (2), 82 (1965), 191–212 | DOI | MR | Zbl
[5] J. Alperin, R. Lyons, “On conjugacy classes of $p$-elements”, J. Algebra, 19:2 (1971), 536–537 | DOI | MR | Zbl
[6] D. O. Revin, “O $\pi$-teoremakh Bera–Sudzuki”, Sib. matem. zh., 52:2 (2011), 430–440 | MR | Zbl
[7] P. Flavell, S. Guest, R. Guralnick, “Characterizations of the solvable radical”, Proc. Am. Math. Soc., 138:4 (2010), 1161–1170 | DOI | MR | Zbl
[8] N. Gordeev, F. Grunewald, B. Kunyavskii, E. Plotkin, “A description of Baer–Suzuki type of the solvable radical of a finite group”, J. Pure Appl. Algebra, 213:2 (2009), 250–258 | DOI | MR | Zbl
[9] N. Gordeev, F. Grunewald, B. Kunyavski, E. Plotkin, “From Thompson to Baer–Suzuki: a sharp characterization of the solvable radical”, J. Algebra, 323:10 (2010), 2888–2904 | DOI | MR | Zbl
[10] N. Yan, Ch. U, D. O. Revin, “O tochnoi teoreme Bera–Suzuki dlya $\pi$-radikala: sporadicheskie gruppy”, Sib. matem. zh., 63:2 (2022), 464–472
[11] Ch. Van, V. Go, D. O. Revin, “K tochnoi teoreme Bera–Suzuki dlya $\pi$-radikala: isklyuchitelnye gruppy malogo ranga”, Algebra i logika, 62:1 (2023), 3–32
[12] D. O. Revin, A. V. Zavarnitsine, “On generations by conjugate elements in almost simple groups with socle $ ^2F_4(q^2)'$”, J. Group Theory, 27:1 (2024), 119–140 | MR | Zbl
[13] R. M. Guralnick, J. Saxl, “Generation of finite almost simple groups by conjugates”, J. Algebra, 268:2 (2003), 519–571 | DOI | MR | Zbl
[14] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, John Wiley Sons, a Wiley Intersci. Publ., London etc., 1972 | MR
[15] P. B. Kleidman, M. Liebeck, The subgroups structure of finite classical groups, Lond. Math. Soc. Lect. Note Ser., 129, Cambridge Univ. Press, Cambridge etc., 1990 | MR
[16] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[17] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, Lond. Math. Soc. Lect. Note Ser., 407, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl
[18] D. Gorenstein, Finite groups, 2nd ed., Chelsea Pub. Co., New York, 1980 | MR | Zbl
[19] A. S. Kondratev, “Podgruppy konechnykh grupp Shevalle”, UMN, 41:1(247) (1986), 57–96 | MR | Zbl
[20] R. A. Wilson, The finite simple groups, Grad. Texts Math., 251, Springer, London, 2009 | DOI | MR | Zbl
[21] S. Gonshaw, M. W. Liebeck, E. A. O'Brien, “Unipotent class representatives for finite classical groups”, J. Group Theory, 20:3 (2017), 505–525 | DOI | MR | Zbl
[22] M. Aschbacher, G. M. Seitz, “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | DOI | MR | Zbl