Toward a sharp Baer–Suzuki theorem for the $\pi$-radical: unipotent elements of groups of Lie type
Algebra i logika, Tome 62 (2023) no. 6, pp. 708-741
Voir la notice de l'article provenant de la source Math-Net.Ru
We will look into the following conjecture, which, if valid, would allow us to formulate an unimprovable analog of the Baer–Suzuki theorem for the $\pi$-radical of a finite group $($here $\pi$ is an arbitrary set of primes$)$. For an odd prime number $r$, put $m=r$, if $r=3$, and $m=r-1$ if $r\geqslant 5$. Let $L$ be a simple non-Abelian group whose order has a prime divisor $s$ such that $s=r$ if $r$ divides $|L|$, and $s>r$ otherwise. Suppose also that $x$ is an automorphism of prime order of $L$. Then some $m$ conjugates of $x$ in the group $\langle L,x\rangle$ generate a subgroup of order divisible by $s$. The conjecture is confirmed for the case where $L$ is a group of Lie type and $x$ is an automorphism induced by a unipotent element.
Keywords:
$\pi$-radical, Baer–Suzuki $\pi$-theorem, group of Lie type
Mots-clés : unipotent element.
Mots-clés : unipotent element.
@article{AL_2023_62_6_a1,
author = {A. -M. Liu and Zh. Wang and D. O. Revin},
title = {Toward a sharp {Baer{\textendash}Suzuki} theorem for the $\pi$-radical: unipotent elements of groups of {Lie} type},
journal = {Algebra i logika},
pages = {708--741},
publisher = {mathdoc},
volume = {62},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2023_62_6_a1/}
}
TY - JOUR AU - A. -M. Liu AU - Zh. Wang AU - D. O. Revin TI - Toward a sharp Baer–Suzuki theorem for the $\pi$-radical: unipotent elements of groups of Lie type JO - Algebra i logika PY - 2023 SP - 708 EP - 741 VL - 62 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2023_62_6_a1/ LA - ru ID - AL_2023_62_6_a1 ER -
A. -M. Liu; Zh. Wang; D. O. Revin. Toward a sharp Baer–Suzuki theorem for the $\pi$-radical: unipotent elements of groups of Lie type. Algebra i logika, Tome 62 (2023) no. 6, pp. 708-741. http://geodesic.mathdoc.fr/item/AL_2023_62_6_a1/