Periodic groups saturated with finite Frobenius groups with complements of orders divisible by a prime number
Algebra i logika, Tome 62 (2023) no. 6, pp. 701-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite Frobenius group in which the order of complements is divisible by a prime number $p$ is called a $\text{Ф}_{ p}$-group. We prove that the following theorem holds. THEOREM. Let $G$ be a periodic group with a finite element $a$ of prime order $p>2$ saturated with ${\Phi}_{ p}$-groups. Then $G=F\leftthreetimes H$ is a Frobenius group with kernel $F$ and complement $H$. If $G$ contains an involution $i$ commuting with the element $a$, then $H=C_G(i)$ and $F$ is Abelian, and $H=N_G(\langle a\rangle)$ otherwise.
Keywords: periodic group, finite Frobenius group
Mots-clés : $\text{Ф}_{ p}$-group.
@article{AL_2023_62_6_a0,
     author = {B. E. Durakov},
     title = {Periodic groups saturated with finite {Frobenius} groups with complements of orders divisible by a prime number},
     journal = {Algebra i logika},
     pages = {701--707},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_6_a0/}
}
TY  - JOUR
AU  - B. E. Durakov
TI  - Periodic groups saturated with finite Frobenius groups with complements of orders divisible by a prime number
JO  - Algebra i logika
PY  - 2023
SP  - 701
EP  - 707
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_6_a0/
LA  - ru
ID  - AL_2023_62_6_a0
ER  - 
%0 Journal Article
%A B. E. Durakov
%T Periodic groups saturated with finite Frobenius groups with complements of orders divisible by a prime number
%J Algebra i logika
%D 2023
%P 701-707
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_6_a0/
%G ru
%F AL_2023_62_6_a0
B. E. Durakov. Periodic groups saturated with finite Frobenius groups with complements of orders divisible by a prime number. Algebra i logika, Tome 62 (2023) no. 6, pp. 701-707. http://geodesic.mathdoc.fr/item/AL_2023_62_6_a0/

[1] A. I. Sozutov, “O gruppakh, nasyschennykh konechnymi gruppami Frobeniusa”, Matem. zametki, 109:2 (2021), 264–275 | DOI | Zbl

[2] B. E. Durakov, A. I. Sozutov, “On periodic groups saturated with finite Frobenius groups”, Izv. Irkutskogo gos. un-ta. Ser. Matem., 35 (2021), 73–86 | MR | Zbl

[3] B. E. Durakov, A. I. Sozutov, “O gruppakh s involyutsiyami, nasyschennykh konechnymi gruppami Frobeniusa”, Sib. matem. zh., 63:6 (2022), 1256–1265 | Zbl

[4] B. E. Durakov, “O gruppakh, nasyschennykh konechnymi gruppami Frobeniusa s dopolneniyami chetnykh poryadkov”, Algebra i logika, 60:6 (2021), 569–574

[5] A. M. Popov, A. I. Sozutov, V. P. Shunkov, Gruppy s sistemami frobeniusovykh podgrupp, IPTs KGTU, Krasnoyarsk, 2004

[6] A. I. Sozutov, “O gruppakh s frobeniusovymi parami sopryazhennykh elementov”, Algebra i logika, 16:2 (1977), 204–212 | MR | Zbl

[7] A. I. Sozutov, “O stroenii neinvariantnogo mnozhitelya v nekotorykh gruppakh Frobeniusa”, Sib. matem. zh., 35:4 (1994), 893–901 | MR | Zbl

[8] A. I. Sozutov, N. M. Suchkov, N. G. Suchkova, Beskonechnye gruppy s involyutsiyami, IPK SFU, Krasnoyarsk, 2011