Periodic groups saturated with finite Frobenius groups with complements of orders divisible by a prime number
Algebra i logika, Tome 62 (2023) no. 6, pp. 701-707
Voir la notice de l'article provenant de la source Math-Net.Ru
A finite Frobenius group in which the order of complements is divisible by a prime number $p$ is called a $\text{Р¤}_{ p}$-group. We prove that the following theorem holds. THEOREM. Let $G$ be a periodic group with a finite element $a$ of prime order $p>2$ saturated with ${\Phi}_{ p}$-groups. Then $G=F\leftthreetimes H$ is a Frobenius group with kernel $F$ and complement $H$. If $G$ contains an involution $i$ commuting with the element $a$, then $H=C_G(i)$ and $F$ is Abelian, and $H=N_G(\langle a\rangle)$ otherwise.
Keywords:
periodic group, finite Frobenius group
Mots-clés : $\text{Р¤}_{ p}$-group.
Mots-clés : $\text{Р¤}_{ p}$-group.
@article{AL_2023_62_6_a0,
author = {B. E. Durakov},
title = {Periodic groups saturated with finite {Frobenius} groups with complements of orders divisible by a prime number},
journal = {Algebra i logika},
pages = {701--707},
publisher = {mathdoc},
volume = {62},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2023_62_6_a0/}
}
TY - JOUR AU - B. E. Durakov TI - Periodic groups saturated with finite Frobenius groups with complements of orders divisible by a prime number JO - Algebra i logika PY - 2023 SP - 701 EP - 707 VL - 62 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2023_62_6_a0/ LA - ru ID - AL_2023_62_6_a0 ER -
B. E. Durakov. Periodic groups saturated with finite Frobenius groups with complements of orders divisible by a prime number. Algebra i logika, Tome 62 (2023) no. 6, pp. 701-707. http://geodesic.mathdoc.fr/item/AL_2023_62_6_a0/