Wreath products of semigroups and Plotkin's problem
Algebra i logika, Tome 62 (2023) no. 5, pp. 665-691.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the wreath product $C=A\wr B$ of a semigroup $A$ with zero and an infinite cyclic semigroup $B$ is ${\mathbf{q}_\omega}$-compact (logically Noetherian). Our result partially solves B. I. Plotkin`s problem for wreath products.
Keywords: universal algebraic geometry, semigroup, wreath product.
@article{AL_2023_62_5_a4,
     author = {A. N. Shevlyakov},
     title = {Wreath products of semigroups and {Plotkin's} problem},
     journal = {Algebra i logika},
     pages = {665--691},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_5_a4/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - Wreath products of semigroups and Plotkin's problem
JO  - Algebra i logika
PY  - 2023
SP  - 665
EP  - 691
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_5_a4/
LA  - ru
ID  - AL_2023_62_5_a4
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T Wreath products of semigroups and Plotkin's problem
%J Algebra i logika
%D 2023
%P 665-691
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_5_a4/
%G ru
%F AL_2023_62_5_a4
A. N. Shevlyakov. Wreath products of semigroups and Plotkin's problem. Algebra i logika, Tome 62 (2023) no. 5, pp. 665-691. http://geodesic.mathdoc.fr/item/AL_2023_62_5_a4/

[1] B. Plotkin, “Seven lectures on universal algebraic geometry”, Groups, algebras and identities, Research workshop of the Israel Sci. Found. "‘Groups, algebras and identities"’, honor of Boris Plotkin's 90th birthday (Bar-Ilan Univ and The Hebrew Univ. Jerusalem, Israel, March 20-24, 2016), Contemp. Math., 726, ed. E. Plotkin, Am. Math. Soc., Providence, RI, 2019, 143–215 | DOI

[2] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fundam. i prikl. matem., 17:1 (2011/2012), 65–106

[3] G. Baumslag, A. Myasnikov, V. Roman'kov, “Two theorems about equationally Noetherian groups”, J. Algebra, 194:2 (1997), 654–664 | DOI

[4] M. Shahryary, A. Shevlyakov, “Direct products, varieties, and compactness conditions”, Groups Complex. Cryptol., 9:2 (2017), 159–166

[5] B. I. Plotkin, “Problemy algebry, inspirirovannye universalnoi algebraicheskoi geometriei”, Fundament. i prikl. matem., 10:3 (2004), 181–197

[6] B. I. Plotkin, “Algebras with the same (algebraic) geometry”, Matematicheskaya logika i algebra, K 100-letiyu so dnya rozhdeniya akad. P. S. Novikova, Trudy MIAN, 242, Nauka, MAIK "‘Nauka/Interperiodika"’, M., 2003, 176–207

[7] A. N. Shevlyakov, “Commutative idempotent semigroups at the service of universal algebraic geometry”, Southeast Asian Bull. Math., 35:1 (2011), 111–136

[8] P. V. Morar, A. N. Shevlyakov, “Algebraic geometry over the additive monoid of natural numbers: systems of coefficient free equations”, Combinatorial and geometric group theory, Dortmund and Ottawa-Montreal conf., Selected papers of the conf. on "‘Combinatorial and geometric group theory with applications"’ (GAGTA), (Dortmund, Germany, August 27-31, 2007), "‘Fields workshop in asymptotic group theory and cryptography"’ (Ottawa, Canada, December 14-16, 2007), and the workshop on "‘Action on trees, non-Archimedian words, and asymptotic cones"’ (Montreal, Canada, December 17-21, 2007), Trends Math., eds. O. Bogopolski et al., Birkhäuser, Basel, 2010, 261–278

[9] A. N. Shevlyakov, “Algebraicheskaya geometriya nad monoidom naturalnykh chisel. Neprivodimye algebraicheskie mnozhestva”, Tr. IMM UrO RAN, 16, no. 2, 2010, 258–269

[10] A. N. Shevlyakov, “Algebraic geometry over natural numbers. The classification of coordinate monoids”, Groups, Complex. Cryptol., 2:1 (2010), 91–111 | DOI

[11] A. N. Shevlyakov, “On group automorphisms in universal algebraic geometry”, Groups, Complex., Cryptol., 11:2 (2019), 115–121 | DOI