Wreath products of semigroups and Plotkin's problem
Algebra i logika, Tome 62 (2023) no. 5, pp. 665-691
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the wreath product $C=A\wr B$ of a semigroup $A$ with zero and an infinite cyclic semigroup $B$ is ${\mathbf{q}_\omega}$-compact (logically Noetherian). Our result partially solves B. I. Plotkin`s problem for wreath products.
Keywords:
universal algebraic geometry, semigroup, wreath product.
@article{AL_2023_62_5_a4,
author = {A. N. Shevlyakov},
title = {Wreath products of semigroups and {Plotkin's} problem},
journal = {Algebra i logika},
pages = {665--691},
publisher = {mathdoc},
volume = {62},
number = {5},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2023_62_5_a4/}
}
A. N. Shevlyakov. Wreath products of semigroups and Plotkin's problem. Algebra i logika, Tome 62 (2023) no. 5, pp. 665-691. http://geodesic.mathdoc.fr/item/AL_2023_62_5_a4/