Wreath products of semigroups and Plotkin's problem
Algebra i logika, Tome 62 (2023) no. 5, pp. 665-691

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the wreath product $C=A\wr B$ of a semigroup $A$ with zero and an infinite cyclic semigroup $B$ is ${\mathbf{q}_\omega}$-compact (logically Noetherian). Our result partially solves B. I. Plotkin`s problem for wreath products.
Keywords: universal algebraic geometry, semigroup, wreath product.
@article{AL_2023_62_5_a4,
     author = {A. N. Shevlyakov},
     title = {Wreath products of semigroups and {Plotkin's} problem},
     journal = {Algebra i logika},
     pages = {665--691},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_5_a4/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - Wreath products of semigroups and Plotkin's problem
JO  - Algebra i logika
PY  - 2023
SP  - 665
EP  - 691
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_5_a4/
LA  - ru
ID  - AL_2023_62_5_a4
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T Wreath products of semigroups and Plotkin's problem
%J Algebra i logika
%D 2023
%P 665-691
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_5_a4/
%G ru
%F AL_2023_62_5_a4
A. N. Shevlyakov. Wreath products of semigroups and Plotkin's problem. Algebra i logika, Tome 62 (2023) no. 5, pp. 665-691. http://geodesic.mathdoc.fr/item/AL_2023_62_5_a4/