Stone dualities for distributive posets
Algebra i logika, Tome 62 (2023) no. 5, pp. 637-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

A topological duality result is established for the category of distributive $c$-posets defined in this paper, as well as for some of its important full subcategories. All duality results presented extend the well-known topological duality result established by M. H. Stone for the category of distributive $(0,1)$-lattices.
Keywords: poset, ideal, spectrum, spectral space.
@article{AL_2023_62_5_a3,
     author = {M. V. Schwidefsky},
     title = {Stone dualities for distributive posets},
     journal = {Algebra i logika},
     pages = {637--664},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_5_a3/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - Stone dualities for distributive posets
JO  - Algebra i logika
PY  - 2023
SP  - 637
EP  - 664
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_5_a3/
LA  - ru
ID  - AL_2023_62_5_a3
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T Stone dualities for distributive posets
%J Algebra i logika
%D 2023
%P 637-664
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_5_a3/
%G ru
%F AL_2023_62_5_a3
M. V. Schwidefsky. Stone dualities for distributive posets. Algebra i logika, Tome 62 (2023) no. 5, pp. 637-664. http://geodesic.mathdoc.fr/item/AL_2023_62_5_a3/

[1] M. H. Stone, “The theory for representations for Boolean algebras”, Trans. Am. Math. Soc., 40 (1936), 37–111

[2] M. H. Stone, “Topological representations of distributive lattices and Brouwerian logics”, Časopis Mat. Fys., Praha, 67 (1937), 1–25

[3] H. A. Priestley, “Representation of distributive lattices by means of ordered Stone spaces”, Bull. Lond. Math. Soc., 2 (1970), 186–190 | DOI

[4] H. A. Priestley, “Ordered topological spaces and the representation of distributive lattices”, Proc. Lond. Math. Soc., III. Ser., 24:3 (1972), 507–530 | DOI

[5] M. Hochster, “Prime ideal structure in commutative rings”, Trans. Am. Math. Soc., 142 (1969), 43–60 | DOI

[6] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. S. Scott, Continuous lattices and domains, Encycl. Math. Appl., 93, Cambridge Univ. Press, Cambridge, 2003

[7] G. Grätzer, Lattice theory: Foundation, Birkhäuser, Basel, 2011

[8] Yu. L. Ershov, Topologiya dlya diskretnoi matematiki, Izd-vo SO RAN, Novosibirsk, 2020

[9] Yu. L. Ershov, “Spektralnaya teoriya polutopologicheskikh polureshetok”, Sib. matem. zh., 44:5 (2003), 1021–1032

[10] Yu. L. Ershov, “Spektralnaya teoriya polutopologicheskikh polureshetok. II”, Izvestiya UrGU (Ser. Matem. mekh.), 2005, no. 7(36), 107–118

[11] Yu. L. Ershov, “Spektry kolets i reshetok”, Sib. matem. zh., 46:2 (2005), 361–373

[12] D. M. Clark, B. A. Davey, Natural dualities for the working algebraist, Camb. Stud. Adv. Math., 57, Cambridge Univ. Press, Cambridge, 1998

[13] W. Dziobiak, M. V. Schwidefsky, “Categorical dualities for some two categories of lattices: an extended abstract”, Bull. Sect. Log., Univ. Ĺódź, Dep. Log., 51:3 (2022), 329–344

[14] Yu. L. Ershov, M. V. Shvidefski, “K spektralnoi teorii chastichno uporyadochennykh mnozhestv”, Sib. matem. zh., 60:3 (2019), 578–598

[15] Yu. L. Ershov, M. V. Shvidefski, “K spektralnoi teorii chastichno uporyadochennykh mnozhestv. II”, Sib. matem. zh., 61:3 (2020), 572–586

[16] C. Batueva, M. Semenova, “Ideals in distributive posets”, Cent. Eur. J. Math., 9:6 (2011), 1380–1388

[17] L. Acosta, I. M. Rubio Perilla, “Nearly spectral spaces”, Bol. Soc. Mat. Mex., III. Ser., 25:3 (2019), 687–700 | DOI