Associative and Jordan Lie nilpotent algebras
Algebra i logika, Tome 62 (2023) no. 5, pp. 614-636.

Voir la notice de l'article provenant de la source Math-Net.Ru

We look at the interconnection between Lie nilpotent Jordan algebras and Lie nilpotent associative algebras. It is proved that a special Jordan algebra is Lie nilpotent if and only if its associative enveloping algebra is Lie nilpotent. Also it turns out that a Jordan algebra is Lie nilpotent of index $2n+1$ if and only if its algebra of multiplications is Lie nilpotent of index $2n$. Finally, we prove a product theorem for Jordan algebras.
Keywords: associative algebra, Jordan algebra, Lie nilpotent algebra, product theorem for Jordan algebras.
@article{AL_2023_62_5_a2,
     author = {S. V. Pchelintsev},
     title = {Associative and {Jordan} {Lie} nilpotent algebras},
     journal = {Algebra i logika},
     pages = {614--636},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_5_a2/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Associative and Jordan Lie nilpotent algebras
JO  - Algebra i logika
PY  - 2023
SP  - 614
EP  - 636
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_5_a2/
LA  - ru
ID  - AL_2023_62_5_a2
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Associative and Jordan Lie nilpotent algebras
%J Algebra i logika
%D 2023
%P 614-636
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_5_a2/
%G ru
%F AL_2023_62_5_a2
S. V. Pchelintsev. Associative and Jordan Lie nilpotent algebras. Algebra i logika, Tome 62 (2023) no. 5, pp. 614-636. http://geodesic.mathdoc.fr/item/AL_2023_62_5_a2/

[1] S. A. Jennings, “On rings whose associated Lie rings are nilpotent”, Bull. Am. Math. Soc., 53:6 (1947), 593–597 | DOI

[2] V. N. Latyshev, “O konechnoi porozhdennosti $\rm T$-ideala s elementom — $[x_1,x_2, x_3,x_4]$”, Sib. matem. zh., 6:6 (1965), 1432–1434

[3] N. Gupta, F. Levin, “On the Lie ideals of a ring”, J. Algebra, 81 (1983), 225–231 | DOI

[4] I. B. Volichenko, $\rm T$-ideal, porozhdennyi elementom $[x_1,x_2,x_3,x_4]$, preprint No 22 (54), In-t matem. AN BSSR, Minsk, 1978, 13 pp.

[5] R. K. Sharma, J. B. Srivastava, “Lie ideals in group rings”, J. Pure Appl. Algebra, 63:1 (1990), 67–80 | DOI

[6] A. Bapat, D. Jordan, “Lower central series of free algebras in symmetric tensor categories”, J. Algebra, 373 (2013), 299–311 | DOI

[7] A. V. Grishin, S. V. Pchelintsev, “O tsentrakh otnositelno svobodnykh assotsiativnykh algebr s tozhdestvom lievoi nilpotentnosti”, Matem. sb., 206:11 (2015), 113–130 | DOI

[8] G. Deryabina, A. Krasilnikov, “Some products of commutators in an associative ring”, Int. J. Algebra Comput., 29:2 (2019), 333–341 | DOI

[9] S. V. Pchelintsev, “Otnositelno svobodnye assotsiativnye Li-nilpotentnye algebry ranga 3”, Sib. elektron. matem. izv., 16 (2019), 1937—1946 http://semr.math.nsc.ru/v16/p1937-1946.pdf

[10] R. R. Dangovski, On the maximal containments of lower central series ideals, arXiv: 1509.08030

[11] R. Tyler, “On the lower central factors of a free associative ring”, Can. J. Math., 27:2 (1975), 434–438 | DOI

[12] V. M. Petrogradsky, “Codimension growth of strong Lie nilpotent associative algebras”, Commun. Algebra, 39:3 (2011), 918–928 | DOI

[13] S. V. Pchelintsev, “Teoremy o proizvedenii dlya alternativnykh algebr i nekotorye ikh primeneniya”, Sib. matem. zh., 64:2 (2023), 383–404

[14] N. Jacobson, Structure and representations of Jordan algebras, Colloq. Publ., 39, Am. Math. Soc., Providence, RI, 1968

[15] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978

[16] A. V. Grishin, “O konechnoi baziruemosti sistem obobschennykh mnogochlenov”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 899–927