Associative and Jordan Lie nilpotent algebras
Algebra i logika, Tome 62 (2023) no. 5, pp. 614-636

Voir la notice de l'article provenant de la source Math-Net.Ru

We look at the interconnection between Lie nilpotent Jordan algebras and Lie nilpotent associative algebras. It is proved that a special Jordan algebra is Lie nilpotent if and only if its associative enveloping algebra is Lie nilpotent. Also it turns out that a Jordan algebra is Lie nilpotent of index $2n+1$ if and only if its algebra of multiplications is Lie nilpotent of index $2n$. Finally, we prove a product theorem for Jordan algebras.
Keywords: associative algebra, Jordan algebra, Lie nilpotent algebra, product theorem for Jordan algebras.
@article{AL_2023_62_5_a2,
     author = {S. V. Pchelintsev},
     title = {Associative and {Jordan} {Lie} nilpotent algebras},
     journal = {Algebra i logika},
     pages = {614--636},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_5_a2/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Associative and Jordan Lie nilpotent algebras
JO  - Algebra i logika
PY  - 2023
SP  - 614
EP  - 636
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_5_a2/
LA  - ru
ID  - AL_2023_62_5_a2
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Associative and Jordan Lie nilpotent algebras
%J Algebra i logika
%D 2023
%P 614-636
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_5_a2/
%G ru
%F AL_2023_62_5_a2
S. V. Pchelintsev. Associative and Jordan Lie nilpotent algebras. Algebra i logika, Tome 62 (2023) no. 5, pp. 614-636. http://geodesic.mathdoc.fr/item/AL_2023_62_5_a2/