A functorial generalization of the Fitting subgroup in finite groups
Algebra i logika, Tome 62 (2023) no. 5, pp. 593-613.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the functional approach of R. Baer and B. I. Plotkin, we introduce and study the notion of $\mathcal{F}$-functorial whose values are characteristic subgroups of a finite group that possess certain properties of the Fitting subgroup. The lattice and semigroups of $\mathcal{F}$-functorials are described, the interrelation between $\mathcal{F}$-functorials and classes of groups is established, a characterization of their values is given in terms of group's elements inducing inner automorphisms on specified chief factors.
Keywords: finite group, Fitting subgroup, generalized Fitting subgroup, functorial, Plotkin radical.
@article{AL_2023_62_5_a1,
     author = {V. I. Murashko and A. F. Vasil'ev},
     title = {A functorial generalization of the {Fitting} subgroup in finite groups},
     journal = {Algebra i logika},
     pages = {593--613},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_5_a1/}
}
TY  - JOUR
AU  - V. I. Murashko
AU  - A. F. Vasil'ev
TI  - A functorial generalization of the Fitting subgroup in finite groups
JO  - Algebra i logika
PY  - 2023
SP  - 593
EP  - 613
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_5_a1/
LA  - ru
ID  - AL_2023_62_5_a1
ER  - 
%0 Journal Article
%A V. I. Murashko
%A A. F. Vasil'ev
%T A functorial generalization of the Fitting subgroup in finite groups
%J Algebra i logika
%D 2023
%P 593-613
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_5_a1/
%G ru
%F AL_2023_62_5_a1
V. I. Murashko; A. F. Vasil'ev. A functorial generalization of the Fitting subgroup in finite groups. Algebra i logika, Tome 62 (2023) no. 5, pp. 593-613. http://geodesic.mathdoc.fr/item/AL_2023_62_5_a1/

[1] H. Fitting, “Beiträge zur Theorie der Gruppen endlicher Ordnung”, Jahresber. Dtsch. Math.-Ver., 48 (1938), 77–141

[2] B. Huppert, N. Blackburn, Finite groups, v. III, Grundlehren Math. Wiss., 243, Springer-Verlag, Berlin a. o., 1982

[3] P. Förster, “Projektive Klassen endlicher Gruppen. IIa: Gesättigte Formationen: Ein allgemeiner Satz von Gaschütz-Lubeseder-Baer-Typ”, Publ., Secc. Mat., Univ. Autòn. Barc., 29:2/3 (1985), 39–76

[4] P. Schmid, “Über die Automorphismengruppen endlicher Gruppen”, Arch. Math., 23:1 (1972), 236–242 | DOI

[5] L. A. Shemetkov, Formatsii konechnykh grupp, Sovrem. algebra, Nauka, M., 1978

[6] D. A. Towers, “The generalised nilradical of a Lie algebra”, J. Algebra, 470 (2017), 197–218 | DOI

[7] R. Baer, “Group theoretical properties and functions”, Colloq. Math., 14 (1966), 285–327 | DOI

[8] B. I. Plotkin, “Radikaly v gruppakh, operatsii na klassakh grupp i radikalnye klassy”, Izbrannye voprosy algebry i logiki, Sbornik, posvyasch. pamyati A. I. Maltsevaed. . A. I. Shirshov, In-t matem. SO AN SSSR, Nauka, Novosibirsk, 1973, 205–244

[9] P. Förster, “Projektive Klassen endlicher Gruppen. I: Schunck- und Gaschützklassen”, Math. Z., 186:2 (1984), 149–178 | DOI

[10] B. J. Gardner, R. Wiegandt, Radical theory of rings, Pure Appl. Math., 261, Marcel Dekker, New York, NY, 2004

[11] V. I. Murashka, A. F. Vasil'ev, “On the lengths of mutually permutable products of finite groups”, Acta Math. Hung., 170:1 (2023), 412–429 | DOI

[12] K. Doerk, T. O. Hawkes, Finite soluble groups, De Gruyter Expo. Math., 4, W. de Gruyter, Berlin etc., 1992

[13] R. L. Griess, P. Schmid, “The Frattini module”, Arch. Math., 30:1 (1978), 256–266 | DOI

[14] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belaruskaya navuka, Minsk, 2003

[15] A. Ballester-Bollinches, L. M. Ezquerro, Classes of finite groups, Math. Appl., 584, Springer, Dordrecht, 2006