Projections of finite rings
Algebra i logika, Tome 62 (2023) no. 4, pp. 524-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ and $R^{\varphi}$ be associative rings with isomorphic subring lattices, and $\varphi$ be a lattice isomorphism (or else a projection) of the ring $R$ onto the ring $R^{\varphi}$. We call $R^{\varphi}$ the projective image of a ring $R$ and call $R$ itself the projective preimage of a ring $R^{\varphi}$. The main result of the first part of the paper is Theorem 5, which proves that the projective image $R^{\varphi}$ of a one-generated finite $p$-ring $R$ is also one-generated if $R^{\varphi}$ at the same time is itself a $p$-ring. In the second part, we continue studying projections of matrix rings. The main result of this part is Theorems 6 and 7, which prove that if $R=M_n(K)$ is the ring of all square matrices of order $n$ over a finite ring $K$ with identity, and $\varphi$ is a projection of the ring $R$ onto the ring $R^{\varphi}$, then $R^{\varphi}=M_n(K')$, where $K'$ is a ring with identity, lattice-isomorphic to the ring $K$.
Keywords: one-generated finite rings, matrix rings, lattice isomorphisms of associative rings.
@article{AL_2023_62_4_a4,
     author = {S. S. Korobkov},
     title = {Projections of finite rings},
     journal = {Algebra i logika},
     pages = {524--551},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_4_a4/}
}
TY  - JOUR
AU  - S. S. Korobkov
TI  - Projections of finite rings
JO  - Algebra i logika
PY  - 2023
SP  - 524
EP  - 551
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_4_a4/
LA  - ru
ID  - AL_2023_62_4_a4
ER  - 
%0 Journal Article
%A S. S. Korobkov
%T Projections of finite rings
%J Algebra i logika
%D 2023
%P 524-551
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_4_a4/
%G ru
%F AL_2023_62_4_a4
S. S. Korobkov. Projections of finite rings. Algebra i logika, Tome 62 (2023) no. 4, pp. 524-551. http://geodesic.mathdoc.fr/item/AL_2023_62_4_a4/

[1] S. S. Korobkov, “Proektirovaniya periodicheskikh nilkolets”, Izv. vuzov. Matem., 1980, no. 7, 30–38 | Zbl

[2] S. S. Korobkov, “Reshetochnye izomorfizmy konechnykh kolets bez nilpotentnykh elementov”, Izv. Ural. gos. un-ta, Matem. i mekhan. Kompyuter. n., 4, no. 22, 2002, 81–93 | Zbl

[3] S. S. Korobkov, “Proektirovaniya kolets Galua”, Algebra i logika, 54:1 (2015), 16–33 | MR | Zbl

[4] S. S. Korobkov, “Proektirovaniya konechnykh odnoporozhdennykh kolets s edinitsei”, Algebra i logika, 55:2 (2016), 192–218 | MR | Zbl

[5] S. S. Korobkov, “Proektirovaniya konechnykh kommutativnykh kolets s edinitsei”, Algebra i logika, 57:3 (2018), 285–305 | MR | Zbl

[6] D. W. Barnes, “Lattice isomorphisms of associative algebras”, J. Aust. Math. Soc., 6:1 (1966), 106–121 | DOI | MR | Zbl

[7] A. V. Yagzhev, “Reshetochnaya opredelyaemost nekotorykh matrichnykh algebr”, Algebra i logika, 13:1 (1974), 104–116 | MR | Zbl

[8] S. S. Korobkov, “Reshetochnaya opredelyaemost nekotorykh matrichnykh kolets”, Matem. sb., 208:1 (2017), 97–110 | DOI | MR

[9] S. S. Korobkov, “Proektirovaniya konechnykh nenilpotentnykh kolets”, Algebra i logika, 58:1 (2019), 69–83 | MR | Zbl

[10] S. S. Korobkov, “Proektirovaniya polulokalnykh kolets”, Algebra i logika, 61:2 (2022), 180–200 | MR | Zbl

[11] S. S. Korobkov, “Periodicheskie koltsa s razlozhimymi v pryamoe proizvedenie reshetkami podkolets”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, ed. P. A. Freidman, Ural. gos. ped. un-t, Ekaterinburg, 1998, 48–59

[12] P. A. Freidman, S. S. Korobkov, “Assotsiativnye koltsa i ikh reshetki podkolets”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, Ural. gos. ped. un-t, Ekaterinburg, 1998, 4–45

[13] S. S. Korobkov, “Konechnye koltsa, soderzhaschie v tochnosti dva maksimalnykh podkoltsa”, Izv. vuzov. Matem., 2011, no. 6, 55–62 | Zbl

[14] B. R. McDonald, Finite rings with identity, Marcel Dekker, New York, 1974 | MR | Zbl

[15] V. P. Elizarov, Konechnye koltsa. Osnovy teorii, Gelios, M., 2006

[16] S. S. Korobkov, “Reshetochnye izomorfizmy konechnykh lokalnykh kolets”, Algebra i logika, 59:1 (2020), 84–100 | MR | Zbl

[17] N. Dzhekobson, Stroenie kolets, IL, M., 1961

[18] D. W. Barnes, “On the radical of a ring with minimum condition”, J. Aust. Math. Soc., 5 (1965), 234–236 | DOI | MR | Zbl