Generating sets of conjugate involutions of groups $PSL_{n}(9)$
Algebra i logika, Tome 62 (2023) no. 4, pp. 479-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

G. Malle, J. Saxl, and T. Weigel in [Geom. Ded., 49, No. 1, 85—116 (1994)] formulated the following problem: For every finite simple non-Abelian group $G$, find the minimum number $n_c(G)$ of generators of conjugate involutions whose product equals 1. (See also Question 14.69c in [Unsolved Problems in Group Theory. The Kourovka Notebook, No. 20, E. I. Khukhro and V. D. Mazurov (eds.), Sobolev Institute of Mathematics SO RAN, Novosibirsk (2022); https://alglog.org/20tkt.pdf].) J. M. Ward [PhD Thesis, Queen Mary College, Univ. London (2009)] solved this problem for sporadic, alternating, and projective special linear groups $PSL_n(q)$ over a field of odd order $q$, except in the case $q=9$ for $n\geq4$ and also in the case $q\equiv3 ({\rm mod} 4)$ for $n=6$. Here we lift the restriction $q\neq9$ for dimensions $n\geq9$ and for the dimension $n=6$.
Keywords: skew-symmetric identity, finitely generated alternative algebra.
@article{AL_2023_62_4_a2,
     author = {R. I. Gvozdev},
     title = {Generating sets of conjugate involutions of groups $PSL_{n}(9)$},
     journal = {Algebra i logika},
     pages = {479--503},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_4_a2/}
}
TY  - JOUR
AU  - R. I. Gvozdev
TI  - Generating sets of conjugate involutions of groups $PSL_{n}(9)$
JO  - Algebra i logika
PY  - 2023
SP  - 479
EP  - 503
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_4_a2/
LA  - ru
ID  - AL_2023_62_4_a2
ER  - 
%0 Journal Article
%A R. I. Gvozdev
%T Generating sets of conjugate involutions of groups $PSL_{n}(9)$
%J Algebra i logika
%D 2023
%P 479-503
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_4_a2/
%G ru
%F AL_2023_62_4_a2
R. I. Gvozdev. Generating sets of conjugate involutions of groups $PSL_{n}(9)$. Algebra i logika, Tome 62 (2023) no. 4, pp. 479-503. http://geodesic.mathdoc.fr/item/AL_2023_62_4_a2/

[1] G. Malle, J. Saxl, T. Weigel, “Generation of classical groups”, Geom. Dedicata, 49:1 (1994), 85–116 | DOI | MR | Zbl

[2] E. I. Khukhro, V. D. Mazurov (eds.), Unsolved problems in group theory. The Kourovka notebook, 20, Sobolev Institute of Mathematics, Novosibirsk, 2022 https://alglog.org/20tkt.pdf | MR

[3] J. M. Ward, Generation of simple groups by conjugate involutions, PhD Thesis, Queen Mary college, Univ. London, 2009

[4] Ya. N. Nuzhin, “O porozhdayuschikh mnozhestvakh involyutsii prostykh konechnykh grupp”, Algebra i logika, 58:3 (2019), 426–434 | MR | Zbl

[5] L. Di Martino, M. C. Tamburini, “2-generation of finite simple groups and some related topics”, Generators and relations in groups and geometries, Proc. NATO/ASI (Castelvecchio-Pascoli/Italy, 1990), NATO ASI Ser., Ser C, 333, 1991, 195–233 | MR | Zbl

[6] I. Yu. Efimov, Ya. N. Nuzhin, “Porozhdayuschie mnozhestva sopryazhennykh involyutsii grupp $SL_n(q)$ pri $n=4,5,7,8$ i nechetnom $q$”, Tr. IMM UrO RAN, 27, no. 1, 2021, 62–69

[7] Ya. N. Nuzhin, “Tenzornye predstavleniya i porozhdayuschie mnozhestva involyutsii nekotorykh matrichnykh grupp”, Tr. IMM UrO RAN, 26, no. 3, 2020, 133–141 | MR

[8] L. Di Martino, N. Vavilov, “$(2,3)$-generation of $SL(n,q)$. I: Cases $n=5,6,7$”, Commun. Algebra, 22:4 (1994), 1321–1347 | DOI | MR | Zbl

[9] K. Tabakov, K. Tchakerian, “$(2,3)$-generation of the groups ${\rm PSL}_6(q)$”, Serdica Math. J., 37:4 (2011), 365–370 | MR | Zbl

[10] M. A. Pellegrini, “The $(2,3)$-generation of the special linear groups over finite fields”, Bull. Aust. Math. Soc., 95:1 (2017), 48–53 | DOI | MR | Zbl

[11] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR

[12] M. Aschbacher, G. M. Seitz, “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | DOI | MR | Zbl

[13] N. A. Vavilov, “O geometrii dlinnykh kornevykh podgrupp v gruppakh Shevalle”, Vestnik Leningradskogo un-ta, Ser. 1: Matem., mekhanika, astronom., 1988, no. 1, 8–11 | Zbl