Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2023_62_4_a2, author = {R. I. Gvozdev}, title = {Generating sets of conjugate involutions of groups $PSL_{n}(9)$}, journal = {Algebra i logika}, pages = {479--503}, publisher = {mathdoc}, volume = {62}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2023_62_4_a2/} }
R. I. Gvozdev. Generating sets of conjugate involutions of groups $PSL_{n}(9)$. Algebra i logika, Tome 62 (2023) no. 4, pp. 479-503. http://geodesic.mathdoc.fr/item/AL_2023_62_4_a2/
[1] G. Malle, J. Saxl, T. Weigel, “Generation of classical groups”, Geom. Dedicata, 49:1 (1994), 85–116 | DOI | MR | Zbl
[2] E. I. Khukhro, V. D. Mazurov (eds.), Unsolved problems in group theory. The Kourovka notebook, 20, Sobolev Institute of Mathematics, Novosibirsk, 2022 https://alglog.org/20tkt.pdf | MR
[3] J. M. Ward, Generation of simple groups by conjugate involutions, PhD Thesis, Queen Mary college, Univ. London, 2009
[4] Ya. N. Nuzhin, “O porozhdayuschikh mnozhestvakh involyutsii prostykh konechnykh grupp”, Algebra i logika, 58:3 (2019), 426–434 | MR | Zbl
[5] L. Di Martino, M. C. Tamburini, “2-generation of finite simple groups and some related topics”, Generators and relations in groups and geometries, Proc. NATO/ASI (Castelvecchio-Pascoli/Italy, 1990), NATO ASI Ser., Ser C, 333, 1991, 195–233 | MR | Zbl
[6] I. Yu. Efimov, Ya. N. Nuzhin, “Porozhdayuschie mnozhestva sopryazhennykh involyutsii grupp $SL_n(q)$ pri $n=4,5,7,8$ i nechetnom $q$”, Tr. IMM UrO RAN, 27, no. 1, 2021, 62–69
[7] Ya. N. Nuzhin, “Tenzornye predstavleniya i porozhdayuschie mnozhestva involyutsii nekotorykh matrichnykh grupp”, Tr. IMM UrO RAN, 26, no. 3, 2020, 133–141 | MR
[8] L. Di Martino, N. Vavilov, “$(2,3)$-generation of $SL(n,q)$. I: Cases $n=5,6,7$”, Commun. Algebra, 22:4 (1994), 1321–1347 | DOI | MR | Zbl
[9] K. Tabakov, K. Tchakerian, “$(2,3)$-generation of the groups ${\rm PSL}_6(q)$”, Serdica Math. J., 37:4 (2011), 365–370 | MR | Zbl
[10] M. A. Pellegrini, “The $(2,3)$-generation of the special linear groups over finite fields”, Bull. Aust. Math. Soc., 95:1 (2017), 48–53 | DOI | MR | Zbl
[11] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR
[12] M. Aschbacher, G. M. Seitz, “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | DOI | MR | Zbl
[13] N. A. Vavilov, “O geometrii dlinnykh kornevykh podgrupp v gruppakh Shevalle”, Vestnik Leningradskogo un-ta, Ser. 1: Matem., mekhanika, astronom., 1988, no. 1, 8–11 | Zbl