Multi-agent temporal logics, information, unification, and projectivity
Algebra i logika, Tome 62 (2023) no. 3, pp. 424-431.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2023_62_3_a6,
     author = {V. V. Rybakov},
     title = {Multi-agent temporal logics, information, unification, and projectivity},
     journal = {Algebra i logika},
     pages = {424--431},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_3_a6/}
}
TY  - JOUR
AU  - V. V. Rybakov
TI  - Multi-agent temporal logics, information, unification, and projectivity
JO  - Algebra i logika
PY  - 2023
SP  - 424
EP  - 431
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_3_a6/
LA  - ru
ID  - AL_2023_62_3_a6
ER  - 
%0 Journal Article
%A V. V. Rybakov
%T Multi-agent temporal logics, information, unification, and projectivity
%J Algebra i logika
%D 2023
%P 424-431
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_3_a6/
%G ru
%F AL_2023_62_3_a6
V. V. Rybakov. Multi-agent temporal logics, information, unification, and projectivity. Algebra i logika, Tome 62 (2023) no. 3, pp. 424-431. http://geodesic.mathdoc.fr/item/AL_2023_62_3_a6/

[1] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning about knowledge, MIT Press, Cambridge, MA, 1995 | MR | Zbl

[2] V. V. Rybakov, “Refined common knowledge logics or logics of common information”, Arch. Math. Logic, 42:2 (2003), 179–200 | DOI | MR | Zbl

[3] S. Artemov, Evidence-based common knowledge, Tech. Report TR-2014018, CUNY Ph.D. Prog. Comput. Sci., revised vers., 2005

[4] E. Antonakos, “Explicit generic common knowledge”, Logical foundations of computer science, Int. symp., LFCS 2013 (San Diego, CA, USA, January 6-8, 2013), Lect. Notes Comput. Sci., 7734, eds. S. Artemov et al., Springer, Berlin, 2013, 16–28 | DOI | MR | Zbl

[5] S. Artemov, “Justification awareness”, J. Log. Comput., 30:8 (2020), 1431–1446 | DOI | MR | Zbl

[6] V. Rybakov, “Temporal Multi-Agent's Logic, Knowledge, Uncertainty, and Plausibility”, Agents and multi-agent systems: technologies and applications, Smart Innov. Systems and Technologies, 241, eds. G. Jezic et al., Springer, Singapore, 2021

[7] F. Baader, R. Kusters, “Unification in a description logic with transitive closure of roles”, Logic for programming, artificial intelligence, and reasoning, 8th int. conf., LPAR 2001 (Havana, Cuba, December 3-7, 2001), Lect. Notes Comput. Sci., Lect. Notes Artif. Intell., 2250, eds. R. Nieuwenhuis et al., Springer, Berlin, 2001, 217–232 | DOI | MR | Zbl

[8] V. V. Rybakov, “Problems of substitution and admissibility in the modal system $Grz$ and in intuitionistic propositional calculus”, Ann. Pure Appl. Logic, 50:1 (1990), 71–106 | DOI | MR | Zbl

[9] V. V. Rybakov, “Rules of inference with parameters for intuitionistic logic”, J. Symb. Log., 57:3 (1992), 912–923 | DOI | MR | Zbl

[10] V. V. Rybakov, “Logical consecutions in discrete linear temporal logic”, J. Symb. Log., 70:4 (2005), 1137–1149 | DOI | MR | Zbl

[11] V. V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Ann. Pure Appl. Logic, 155:1 (2008), 32–45 | DOI | MR | Zbl

[12] V. Rybakov, “Projective formulas and unification in linear temporal logic ${\rm LTL}_U$”, Log. J. IGPL, 22:4 (2014), 665–672 | DOI | MR | Zbl

[13] V. V. Rybakov, “Non-transitive linear temporal logic and logical knowledge operations”, J. Log. Comput., 26:3 (2016), 945–958 | DOI | MR | Zbl

[14] V. V. Rybakov, “Intranzitivnye vremennye mnogoagentnye logiki, informatsiya i znanie, razreshimost”, Sib. matem. zh., 58:5 (2017), 1128–1143 | MR | Zbl

[15] V. V. Rybakov, “Vremennye multiagentnye logiki s multioznachivaniyami”, Sib. matem. zh., 59:4 (2018), 897–911 | MR | Zbl

[16] V. V. Rybakov, “Branching time agents' logic, satisfiability problem by rules in reduced form”, Sib. elektron. matem. izv., 16 (2019), 1158–1170 http://semr.math.nsc.ru/v16/p1158-1170.pdf | MR | Zbl

[17] W. Dzik, P. Wojtylak, “Projective unification in modal logic”, Log. J. IGPL, 20:1 (2012), 121–153 | DOI | MR | Zbl

[18] S. Ghilardi, “Unification through projectivity”, J. Log. Comput., 7:6 (1997), 733–752 | DOI | MR | Zbl

[19] S. Ghilardi, “Unification, finite duality and projectivity in varieties of Heyting algebras”, Ann. Pure Appl. Logic, 127:1–3 (2004), 99–115 | DOI | MR | Zbl