Pretabularity and Craig’s interpolation property
Algebra i logika, Tome 62 (2023) no. 3, pp. 415-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2023_62_3_a5,
     author = {L. L. Maksimova and V. F. Yun},
     title = {Pretabularity and {Craig{\textquoteright}s} interpolation property},
     journal = {Algebra i logika},
     pages = {415--423},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_3_a5/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - Pretabularity and Craig’s interpolation property
JO  - Algebra i logika
PY  - 2023
SP  - 415
EP  - 423
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_3_a5/
LA  - ru
ID  - AL_2023_62_3_a5
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T Pretabularity and Craig’s interpolation property
%J Algebra i logika
%D 2023
%P 415-423
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_3_a5/
%G ru
%F AL_2023_62_3_a5
L. L. Maksimova; V. F. Yun. Pretabularity and Craig’s interpolation property. Algebra i logika, Tome 62 (2023) no. 3, pp. 415-423. http://geodesic.mathdoc.fr/item/AL_2023_62_3_a5/

[1] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1937), 119–136 | MR

[2] L. L. Maksimova, “Predtablichnye superintuitsionistskie logiki”, Algebra i logika, 11:5 (1972), 558–570 | MR | Zbl

[3] M. I. Verkhozina, “Promezhutochnye pozitivnye logiki”, Algoritmicheskie voprosy algebraicheskikh sistem, Irkutsk, 1978, 13–25

[4] L. L. Maksimova, V. F. Yun, “Problema tablichnosti nad minimalnoi logikoi”, Sib. matem. zh., 57:6 (2016), 1320–1332 | MR | Zbl

[5] L. L. Maksimova, “Predtablichnye rasshireniya logiki ${\rm S4}$ Lyuisa”, Algebra i logika, 14:1 (1975), 28–55 | MR

[6] W. J. Blok, “Pretabular varieties of modal algebras”, Stud. Log., 39:2/3 (1980), 101–124 | DOI | MR | Zbl

[7] A. V. Chagrov, “Netablichnost — predtablichnost, antitablichnost, koantitablichnost”, Algebro-logicheskie konstruktsii, Izd-vo KGU, Kalinin, 1989, 105–111

[8] W. Craig, “Three uses of Herbrand–Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl

[9] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl

[10] L. L. Maksimova, “Interpolyatsionnye teoremy v modalnykh logikakh i amalgamiruemye mnogoobraziya topobulevykh algebr”, Algebra i logika, 18:5 (1979), 556–586 | MR | Zbl

[11] A. B. Kuznetsov, “Nekotorye svoistva struktury mnogoobrazii psevdobulevykh algebr”, XI Vsesoyuznyi algebraicheskii kollokvium (Kishinev, 1971), 255–256

[12] L. L. Maksimova, “Neyavnaya opredelimost i pozitivnye logiki”, Algebra i logika, 42:1 (2003), 65–93 | MR | Zbl

[13] L. L. Maksimova, “Modalnye logiki i mnogoobraziya modalnykh algebr: svoistvo Beta, interpolyatsiya i amalgamiruemost”, Algebra i logika, 31:2 (1992), 145–166 | MR | Zbl

[14] L. Maksimova, “Strongly decidable properties of modal and intuitionistic calculi”, Log. J. IGPL, 8:6 (2000), 797–819 | DOI | MR | Zbl

[15] L. L. Maksimova, V. F. Yun, “Predtablichnost i interpolyatsionnoe svoistvo Kreiga nad minimalnoi logikoi”, Sib. elektron. matem. izv., 20:1 (2023), 245–250 http://semr.math.nsc.ru/v20/n1/p245-250.pdf | MR

[16] L. L. Maksimova, V. F. Yun, “Interpolyatsionnoe svoistvo Kreiga v predtablichnykh logikakh”, Sib. matem. zh. (to appear)

[17] D. M. Gabbay, L. Maksimova, Interpolation and definability: modal and intuitionistic logics, Oxford Logic Guides. Oxford Sci. Publ., 46, Clarendon Press, Oxford, 2005 | MR | Zbl