The Baer--Suzuki theorem for groups of 3-exponent~1
Algebra i logika, Tome 62 (2023) no. 3, pp. 400-407.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem that generalizes Lemma 4 in the paper of A. S. Mamontov [Sib. Math. J., 54, No. 1, 114—118 (2013)] concerning the validity of the Baer–Suzuki theorem in groups of period 12. The results of the present paper can be used in studying groups with a given set of element orders, also called a spectrum.
Keywords: Baer–Suzuki theorem, group of period 12.
@article{AL_2023_62_3_a3,
     author = {J. Tang and N. Yang and A. S. Mamontov},
     title = {The {Baer--Suzuki} theorem for groups of 3-exponent~1},
     journal = {Algebra i logika},
     pages = {400--407},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_3_a3/}
}
TY  - JOUR
AU  - J. Tang
AU  - N. Yang
AU  - A. S. Mamontov
TI  - The Baer--Suzuki theorem for groups of 3-exponent~1
JO  - Algebra i logika
PY  - 2023
SP  - 400
EP  - 407
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_3_a3/
LA  - ru
ID  - AL_2023_62_3_a3
ER  - 
%0 Journal Article
%A J. Tang
%A N. Yang
%A A. S. Mamontov
%T The Baer--Suzuki theorem for groups of 3-exponent~1
%J Algebra i logika
%D 2023
%P 400-407
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_3_a3/
%G ru
%F AL_2023_62_3_a3
J. Tang; N. Yang; A. S. Mamontov. The Baer--Suzuki theorem for groups of 3-exponent~1. Algebra i logika, Tome 62 (2023) no. 3, pp. 400-407. http://geodesic.mathdoc.fr/item/AL_2023_62_3_a3/

[1] R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133:3 (1957), 256–270 | DOI | MR | Zbl

[2] M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. Math. (2), 82 (1965), 191–212 | DOI | MR | Zbl

[3] J. Alperin, R. Lyons, “On conjugacy classes of $p$-elements”, J. Algebra, 19:2 (1971), 536–537 | DOI | MR | Zbl

[4] H. Wielandt, “Kriterien für Subnormalität in endlichen Gruppen”, Math. Z., 138 (1974), 199–203 | DOI | MR | Zbl

[5] N. Gordeev, F. Grunewald, B. Kunyavski, E. Plotkin, “From Thompson to Baer–Suzuki: a sharp characterization of the solvable radical”, J. Algebra, 323:10 (2010), 2888–2904 | DOI | MR | Zbl

[6] P. Flavell, S. Guest, R. Guralnick, “Characterizations of the solvable radical”, Proc. Am. Math. Soc., 138:4 (2010), 1161–1170 | DOI | MR | Zbl

[7] D. O. Revin, “O $\pi$-teoremakh Bera–Sudzuki”, Sib. matem. zh., 52:2 (2011), 430–440 | MR | Zbl

[8] N. Yang, D. O. Revin, E. P. Vdovin, “Baer–Suzuki theorem for the $\pi$-radical”, Isr. J. Math., 245:1 (2021), 173–207 | DOI | MR

[9] N. Yan, Chzh. U, D. O. Revin, E. P. Vdovin, “O tochnoi teoreme Bera–Suzuki dlya $\pi$-radikala konechnoi gruppy”, Matem. sb., 214:1 (2023), 113–154 | DOI | MR | Zbl

[10] E. I. Khukhro, V. D. Mazurov (eds.), Unsolved problems in group theory, The Kourovka notebook, 20, Sobolev Institute of Mathematics, Novosibirsk, 2022 https://alglog.org/20tkt.pdf | MR

[11] A. I. Sozutov, “Ob odnom obobschenii teoremy Bera–Sudzuki”, Sib. matem. zh., 41:3 (2000), 674–675 | MR | Zbl

[12] A. S. Mamontov, “O teoreme Bera–Suzuki dlya grupp 2-perioda 4”, Algebra i logika, 53:5 (2014), 649–652 | MR | Zbl

[13] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uch. zapiski LGU. Ser. matem., 10:55 (1940), 166–170 | MR | Zbl

[14] V. D. Mazurov, A. Yu. Olshanskii, A. I. Sozutov, “O beskonechnykh gruppakh konechnogo perioda”, Algebra i logika, 54:2 (2015), 243–251 | MR | Zbl

[15] A. S. Mamontov, “Gruppy perioda 12 bez elementov poryadka 12”, Sib. matem. zh., 54:1 (2013), 150–156 | MR | Zbl

[16] W. Burnside, “On an unsettled question in the theory of discontinuous groups”, Q. J. Pure Appl. Math., 33 (1902), 230–238

[17] C. Hopkins, “Finite groups in which conjugate operations are commutative”, Am. J. Math., 51 (1929), 35–41 | DOI | MR

[18] F. Levi, B. L. van der Waerden, “Über eine besondere Klasse von Gruppen”, Abh. Math. Semin. Hamb. Univ., 9 (1932), 154–158 | DOI | MR | Zbl

[19] B. H. Neumann, “Groups whose elements have bounded orders”, J. Lond. Math. Soc., 12 (1937), 195–198 | DOI | MR | Zbl