Skew-symmetric identities of finitely generated alternative algebras
Algebra i logika, Tome 62 (2023) no. 3, pp. 387-399

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for every natural number $n$, there exists a natural number $N(n)$ such that every multilinear skew-symmetric polynomial in $N(n)$ or more variables which vanishes in the free associative algebra also vanishes in any $n$-generated alternative algebra over a field of characteristic $0$. Previously, a similar result was proved for just a series of skew-symmetric polynomials constructed by I. P. Shestakov in [Algebra and Logic, 16, No. 2, 153—166 (1977)].
Keywords: skew-symmetric identity, finitely generated alternative algebra.
@article{AL_2023_62_3_a2,
     author = {I. P. Shestakov},
     title = {Skew-symmetric identities of finitely generated alternative algebras},
     journal = {Algebra i logika},
     pages = {387--399},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_3_a2/}
}
TY  - JOUR
AU  - I. P. Shestakov
TI  - Skew-symmetric identities of finitely generated alternative algebras
JO  - Algebra i logika
PY  - 2023
SP  - 387
EP  - 399
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_3_a2/
LA  - ru
ID  - AL_2023_62_3_a2
ER  - 
%0 Journal Article
%A I. P. Shestakov
%T Skew-symmetric identities of finitely generated alternative algebras
%J Algebra i logika
%D 2023
%P 387-399
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_3_a2/
%G ru
%F AL_2023_62_3_a2
I. P. Shestakov. Skew-symmetric identities of finitely generated alternative algebras. Algebra i logika, Tome 62 (2023) no. 3, pp. 387-399. http://geodesic.mathdoc.fr/item/AL_2023_62_3_a2/