Skew-symmetric identities of finitely generated alternative algebras
Algebra i logika, Tome 62 (2023) no. 3, pp. 387-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for every natural number $n$, there exists a natural number $N(n)$ such that every multilinear skew-symmetric polynomial in $N(n)$ or more variables which vanishes in the free associative algebra also vanishes in any $n$-generated alternative algebra over a field of characteristic $0$. Previously, a similar result was proved for just a series of skew-symmetric polynomials constructed by I. P. Shestakov in [Algebra and Logic, 16, No. 2, 153—166 (1977)].
Keywords: skew-symmetric identity, finitely generated alternative algebra.
@article{AL_2023_62_3_a2,
     author = {I. P. Shestakov},
     title = {Skew-symmetric identities of finitely generated alternative algebras},
     journal = {Algebra i logika},
     pages = {387--399},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_3_a2/}
}
TY  - JOUR
AU  - I. P. Shestakov
TI  - Skew-symmetric identities of finitely generated alternative algebras
JO  - Algebra i logika
PY  - 2023
SP  - 387
EP  - 399
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_3_a2/
LA  - ru
ID  - AL_2023_62_3_a2
ER  - 
%0 Journal Article
%A I. P. Shestakov
%T Skew-symmetric identities of finitely generated alternative algebras
%J Algebra i logika
%D 2023
%P 387-399
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_3_a2/
%G ru
%F AL_2023_62_3_a2
I. P. Shestakov. Skew-symmetric identities of finitely generated alternative algebras. Algebra i logika, Tome 62 (2023) no. 3, pp. 387-399. http://geodesic.mathdoc.fr/item/AL_2023_62_3_a2/

[1] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[2] V. T. Filippov, V. K. Kharchenko, I. P. Shestakov, Nereshennye problemy teorii kolets i modulei. Dnestrovskaya tetrad, 4-e izd., Izd-vo IM SO RAN, Novosibirsk, 1993

[3] I. P. Shestakov, “Ob odnoi probleme Shirshova”, Algebra i logika, 16:2 (1977), 227–246 | MR | Zbl

[4] I. P. Shestakov, “Skew-symmetric identities of finitely generated Malcev algebras”, Mat. Zh., 16:2 (2016), 206–213 | MR | Zbl

[5] I. P. Shestakov, “O nekotorykh klassakh nekommutativnykh iordanovykh kolets”, Algebra i logika, 10:4 (1971), 407–448

[6] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[7] I. P. Shestakov, “Alternativnye i iordanovy superalgebry”, Algebra, geometriya, analiz i matematicheskaya fizika, 10-ya Sib. shkola, Izd-vo IM SO RAN, Novosibirsk, 1997, 157–169 | Zbl

[8] I. P. Shestakov, “Free Malcev superalgebra on one odd generator”, J. Algebra Appl., 2:4 (2003), 451–461 | DOI | MR | Zbl

[9] I. Shestakov, N. Zhukavets, “Universal multiplicative envelope of the free Malcev superalgebra on one odd generator”, Commun. Algebra, 34:4 (2006), 1319–1344 | DOI | MR | Zbl

[10] I. Shestakov, N. Zhukavets, “The free alternative superalgebra on one odd generator”, Int. J. Algebra Comput., 17:5/6 (2007), 1215–1247 | DOI | MR | Zbl

[11] I. P. Shestakov, “Konechnoporozhdennye spetsialnye iordanovy i alternativnye $PI$-algebry”, Matem. sb., 122(164):1(9) (1983), 31–40 | MR | Zbl

[12] I. N. Herstein, Noncommutative rings, The Carus Math. Monogr., 15, MAA Press, Washington, DC, 1996 ; I. N. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR

[13] S. R. Sverchkov, “The composition structure of alternative and Malcev algebras”, Commun. Algebra, 44:2 (2016), 457–478 | DOI | MR | Zbl

[14] A. R. Kemer, “Zamechanie o standartnom tozhdestve”, Matem. zametki, 23:5 (1978), 753–757 | MR | Zbl