Von Neumann regular hyperrings and applications to real reduced multirings
Algebra i logika, Tome 62 (2023) no. 3, pp. 323-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiring is a ring-like structure where the sum is multivalued and a hyperring is a multiring with a strong distributive property. With every multiring we associate a structural presheaf, and when that presheaf is a sheaf, we say that the multiring is geometric. A characterization of geometric von Neumann hyperrings is presented. And we build a von Neumann regular hull for multirings which is used in applications to algebraic theory of quadratic forms. Namely, we describe the functor $Q$, introduced by M. Marshall in [J. Pure Appl. Algebra, 205, No. 2, 452—468 (2006)], as a left adjoint functor for the natural inclusion of the category of real reduced multirings (similar to real semigroups) into the category of preordered multirings and explore some of its properties. Next, we employ sheaf-theoretic methods to characterize real reduced hyperrings as certain geometric von Neumann regular real hyperrings and construct the functor $V$, a geometric von Neumann regular hull for a multiring. Finally, we look at some interesting logical and algebraic interactions between the functors $Q$ and $V$ that are useful for describing hyperrings in the image of the functor $Q$ and that will allow us to explore the theory of quadratic forms for (formally) real semigroups.
Keywords: real algebra, quadratic form, multiring, von Neumann hyperring, real reduced multiring, real semigroup.
@article{AL_2023_62_3_a1,
     author = {H. R. De Oliveira Ribeiro and H. L. Mariano},
     title = {Von {Neumann} regular hyperrings and applications to real reduced multirings},
     journal = {Algebra i logika},
     pages = {323--386},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_3_a1/}
}
TY  - JOUR
AU  - H. R. De Oliveira Ribeiro
AU  - H. L. Mariano
TI  - Von Neumann regular hyperrings and applications to real reduced multirings
JO  - Algebra i logika
PY  - 2023
SP  - 323
EP  - 386
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_3_a1/
LA  - ru
ID  - AL_2023_62_3_a1
ER  - 
%0 Journal Article
%A H. R. De Oliveira Ribeiro
%A H. L. Mariano
%T Von Neumann regular hyperrings and applications to real reduced multirings
%J Algebra i logika
%D 2023
%P 323-386
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_3_a1/
%G ru
%F AL_2023_62_3_a1
H. R. De Oliveira Ribeiro; H. L. Mariano. Von Neumann regular hyperrings and applications to real reduced multirings. Algebra i logika, Tome 62 (2023) no. 3, pp. 323-386. http://geodesic.mathdoc.fr/item/AL_2023_62_3_a1/

[1] M. Marshall, “Real reduced multirings and multifields”, J. Pure Appl. Algebra, 205:2 (2006), 452–468 | DOI | MR | Zbl

[2] H. R. O. Ribeiro, K. M. A. Roberto, H. L. Mariano, “Functorial relationships between multirings and the various abstract theories of quadratic forms”, São Paulo J. Math. Sci., 16:1 (2022), 5–42 | DOI | MR

[3] M. Dickmann, A. Petrovich, “Real semigroups and abstract real spectra. I”, Algebraic and arithmetic theory of quadratic forms, Proc. int. conf. (Universidad de Talca, Talca and Pucón, Chile, December 11–18, 2002), Contemp. Math., 344, eds. R. Baeza et al., Am. Math. Soc., Providence, RI, 2004, 99–119 | DOI | MR | Zbl

[4] M. A. Dickmann, F. Miraglia, Special groups. Boolean-theoretic methods in the theory of quadratic forms, Mem. Am. Math. Soc., 689, Am. Math. Soc., Providence, RI, 2000 | MR | Zbl

[5] M. A. Marshall, Spaces of orderings and abstract real spectra, Lect. Notes Math., 1636, Springer, Berlin, 1996 | DOI | MR | Zbl

[6] M. Dickmann, F. Miraglia, “Representation of reduced special groups in algebras of continuous functions”, Quadratic forms — algebra, arithmetic, and geometry, Based on int. conf. on the algebraic and arithmetic theory of quadratic forms (Frutillar, Chile, December 13–19, 2007), Contemp. Math., 493, eds. R. Baeza et al., Am. Math. Soc., Providence, RI, 2009, 83–97 | DOI | MR | Zbl

[7] J. Jun, “Algebraic geometry over hyperrings”, Adv. Math., 323 (2018), 142–192 | DOI | MR | Zbl

[8] M. Dickmann, A. Petrovich, Real semigroups, real spectra and quadratic forms over rings https://www.ime.usp.br/m̃iraglia/textos/RS-fev-18.pdf

[9] P. Arndt, H. L. Mariano, “The von Neumann-regular hull of (preordered) rings and quadratic forms”, South Amer. J. Log., 2:2 (2016), 201–244 | MR

[10] C. C. Chang, H. J. Keisler, Model theory, Stud. Logic Found. Math., 73, 3rd rev. ed., North-Holland, Amsterdam etc., 1990 | MR | Zbl

[11] F. Miraglia, An introduction to partially ordered structures and sheaves, Contemp. Log., Polimetrica, Monza, 2006 | Zbl

[12] M. Dickmann, F. Miraglia, “Quadratic form theory over preordered von Neumann-regular rings”, J. Algebra, 319:4 (2008), 1696–1732 | DOI | MR | Zbl

[13] M. Dickmann, N. Schwartz, M. Tressl, Spectral spaces, New Math. Monogr., 35, Cambridge Univ. Press, Cambridge, 2019 | MR | Zbl

[14] H. R. O. Ribeiro, H. L. Mariano, Witt rings for real semigroups, in preparation

[15] H. R. O. Ribeiro, H. L. Mariano, Hulls for real semigroups and applications, in preparation

[16] K. M. A. Roberto, H. R. O. Ribeiro, H. L. Mariano, Quadratic extensions of special hyperfields and the general Arason–Pfister Hauptsatz, arXiv: 2210.03784

[17] K. M. A. Roberto, H. R. O. Ribeiro, H. L. Mariano, “Quadratic structures associated to (multi)rings”, Categ. Gen. Algebr. Struct. Appl., 16:1 (2022), 105–141 | MR | Zbl