Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2023_62_3_a1, author = {H. R. De Oliveira Ribeiro and H. L. Mariano}, title = {Von {Neumann} regular hyperrings and applications to real reduced multirings}, journal = {Algebra i logika}, pages = {323--386}, publisher = {mathdoc}, volume = {62}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2023_62_3_a1/} }
TY - JOUR AU - H. R. De Oliveira Ribeiro AU - H. L. Mariano TI - Von Neumann regular hyperrings and applications to real reduced multirings JO - Algebra i logika PY - 2023 SP - 323 EP - 386 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2023_62_3_a1/ LA - ru ID - AL_2023_62_3_a1 ER -
H. R. De Oliveira Ribeiro; H. L. Mariano. Von Neumann regular hyperrings and applications to real reduced multirings. Algebra i logika, Tome 62 (2023) no. 3, pp. 323-386. http://geodesic.mathdoc.fr/item/AL_2023_62_3_a1/
[1] M. Marshall, “Real reduced multirings and multifields”, J. Pure Appl. Algebra, 205:2 (2006), 452–468 | DOI | MR | Zbl
[2] H. R. O. Ribeiro, K. M. A. Roberto, H. L. Mariano, “Functorial relationships between multirings and the various abstract theories of quadratic forms”, São Paulo J. Math. Sci., 16:1 (2022), 5–42 | DOI | MR
[3] M. Dickmann, A. Petrovich, “Real semigroups and abstract real spectra. I”, Algebraic and arithmetic theory of quadratic forms, Proc. int. conf. (Universidad de Talca, Talca and Pucón, Chile, December 11–18, 2002), Contemp. Math., 344, eds. R. Baeza et al., Am. Math. Soc., Providence, RI, 2004, 99–119 | DOI | MR | Zbl
[4] M. A. Dickmann, F. Miraglia, Special groups. Boolean-theoretic methods in the theory of quadratic forms, Mem. Am. Math. Soc., 689, Am. Math. Soc., Providence, RI, 2000 | MR | Zbl
[5] M. A. Marshall, Spaces of orderings and abstract real spectra, Lect. Notes Math., 1636, Springer, Berlin, 1996 | DOI | MR | Zbl
[6] M. Dickmann, F. Miraglia, “Representation of reduced special groups in algebras of continuous functions”, Quadratic forms — algebra, arithmetic, and geometry, Based on int. conf. on the algebraic and arithmetic theory of quadratic forms (Frutillar, Chile, December 13–19, 2007), Contemp. Math., 493, eds. R. Baeza et al., Am. Math. Soc., Providence, RI, 2009, 83–97 | DOI | MR | Zbl
[7] J. Jun, “Algebraic geometry over hyperrings”, Adv. Math., 323 (2018), 142–192 | DOI | MR | Zbl
[8] M. Dickmann, A. Petrovich, Real semigroups, real spectra and quadratic forms over rings https://www.ime.usp.br/m̃iraglia/textos/RS-fev-18.pdf
[9] P. Arndt, H. L. Mariano, “The von Neumann-regular hull of (preordered) rings and quadratic forms”, South Amer. J. Log., 2:2 (2016), 201–244 | MR
[10] C. C. Chang, H. J. Keisler, Model theory, Stud. Logic Found. Math., 73, 3rd rev. ed., North-Holland, Amsterdam etc., 1990 | MR | Zbl
[11] F. Miraglia, An introduction to partially ordered structures and sheaves, Contemp. Log., Polimetrica, Monza, 2006 | Zbl
[12] M. Dickmann, F. Miraglia, “Quadratic form theory over preordered von Neumann-regular rings”, J. Algebra, 319:4 (2008), 1696–1732 | DOI | MR | Zbl
[13] M. Dickmann, N. Schwartz, M. Tressl, Spectral spaces, New Math. Monogr., 35, Cambridge Univ. Press, Cambridge, 2019 | MR | Zbl
[14] H. R. O. Ribeiro, H. L. Mariano, Witt rings for real semigroups, in preparation
[15] H. R. O. Ribeiro, H. L. Mariano, Hulls for real semigroups and applications, in preparation
[16] K. M. A. Roberto, H. R. O. Ribeiro, H. L. Mariano, Quadratic extensions of special hyperfields and the general Arason–Pfister Hauptsatz, arXiv: 2210.03784
[17] K. M. A. Roberto, H. R. O. Ribeiro, H. L. Mariano, “Quadratic structures associated to (multi)rings”, Categ. Gen. Algebr. Struct. Appl., 16:1 (2022), 105–141 | MR | Zbl