Generalized Schur groups
Algebra i logika, Tome 62 (2023) no. 2, pp. 247-265

Voir la notice de l'article provenant de la source Math-Net.Ru

An $S$-ring (Schur ring) is said to be central if it is contained in the center of a group ring. We introduce the notion of a generalized Schur group, i.e., a finite group such that all central $S$-rings over this group are Schurian. It generalizes the notion of a Schur group in a natural way, and for Abelian groups, the two notions are equivalent. We prove basic properties and present infinite families of non-Abelian generalized Schur groups.
Keywords: Schur rings, Schur groups, $p$-groups, Camina groups, dihedral groups.
@article{AL_2023_62_2_a4,
     author = {G. K. Ryabov},
     title = {Generalized {Schur} groups},
     journal = {Algebra i logika},
     pages = {247--265},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a4/}
}
TY  - JOUR
AU  - G. K. Ryabov
TI  - Generalized Schur groups
JO  - Algebra i logika
PY  - 2023
SP  - 247
EP  - 265
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_2_a4/
LA  - ru
ID  - AL_2023_62_2_a4
ER  - 
%0 Journal Article
%A G. K. Ryabov
%T Generalized Schur groups
%J Algebra i logika
%D 2023
%P 247-265
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_2_a4/
%G ru
%F AL_2023_62_2_a4
G. K. Ryabov. Generalized Schur groups. Algebra i logika, Tome 62 (2023) no. 2, pp. 247-265. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a4/