Generalized Schur groups
Algebra i logika, Tome 62 (2023) no. 2, pp. 247-265
Voir la notice de l'article provenant de la source Math-Net.Ru
An $S$-ring (Schur ring) is said to be central if it is contained in the center of a group ring. We introduce the notion of a generalized Schur group, i.e., a finite group such that all central $S$-rings over this group are Schurian. It generalizes the notion of a Schur group in a natural way, and for Abelian groups, the two notions are equivalent. We prove basic properties and present infinite families of non-Abelian generalized Schur groups.
Keywords:
Schur rings, Schur groups, $p$-groups, Camina groups, dihedral groups.
@article{AL_2023_62_2_a4,
author = {G. K. Ryabov},
title = {Generalized {Schur} groups},
journal = {Algebra i logika},
pages = {247--265},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a4/}
}
G. K. Ryabov. Generalized Schur groups. Algebra i logika, Tome 62 (2023) no. 2, pp. 247-265. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a4/