Generalized Schur groups
Algebra i logika, Tome 62 (2023) no. 2, pp. 247-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $S$-ring (Schur ring) is said to be central if it is contained in the center of a group ring. We introduce the notion of a generalized Schur group, i.e., a finite group such that all central $S$-rings over this group are Schurian. It generalizes the notion of a Schur group in a natural way, and for Abelian groups, the two notions are equivalent. We prove basic properties and present infinite families of non-Abelian generalized Schur groups.
Keywords: Schur rings, Schur groups, $p$-groups, Camina groups, dihedral groups.
@article{AL_2023_62_2_a4,
     author = {G. K. Ryabov},
     title = {Generalized {Schur} groups},
     journal = {Algebra i logika},
     pages = {247--265},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a4/}
}
TY  - JOUR
AU  - G. K. Ryabov
TI  - Generalized Schur groups
JO  - Algebra i logika
PY  - 2023
SP  - 247
EP  - 265
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_2_a4/
LA  - ru
ID  - AL_2023_62_2_a4
ER  - 
%0 Journal Article
%A G. K. Ryabov
%T Generalized Schur groups
%J Algebra i logika
%D 2023
%P 247-265
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_2_a4/
%G ru
%F AL_2023_62_2_a4
G. K. Ryabov. Generalized Schur groups. Algebra i logika, Tome 62 (2023) no. 2, pp. 247-265. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a4/

[1] I. Schur, “Zur Theorie der einfach transitiven Permutationsgruppen”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1933, no. 18–20, 598–623 | Zbl

[2] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl

[3] M. Muzychuk, I. Ponomarenko, “Schur rings”, Eur. J. Comb., 30:6 (2009), 1526–1539 | DOI | MR | Zbl

[4] A. O. F. Hendrickson, “Supercharacter theory constructions corresponding to Schur ring products”, Commun. Algebra, 40:12 (2012), 4420–4438 | DOI | MR | Zbl

[5] P. Diaconis, M. Isaacs, “Supercharacters and superclasses for algebra groups”, Trans. Am. Math. Soc., 360:5 (2008), 2359–2392 | DOI | MR | Zbl

[6] M. E. Muzychuk, I. N. Ponomarenko, G. Chen, “O teorii Shura–Vilandta dlya tsentralnykh $S$-kolets”, Algebra i logika, 55:1 (2016), 58–74 | MR | Zbl

[7] S. P. Humphries, D. R. Wagner, “Central Schur rings over the projective special linear groups”, Commun. Algebra, 45:12 (2017), 5325–5337 | DOI | MR | Zbl

[8] J. Guo, W. Guo, G. Ryabov, A. V. Vasil'ev, “On Cayley representations of central Cayley graphs over almost simple groups”, J. Algebr. Comb., 57:1 (2023), 227–237 | DOI | MR | Zbl

[9] I. Ponomarenko, A. Vasil'ev, “Testing isomorphism of central Cayley graphs over almost simple groups in polynomial time”, Problems in the theory of representations of algebras and groups. Part 31, Zap. Nauchn. Sem. POMI, 455, 2017, 154–180 | MR

[10] G. Chen, I. Ponomarenko, Coherent configurations, Central China Normal Univ. Press, Wuhan, 2019

[11] M. H. Klin, R. Pöschel, “The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings”, Algebraic Methods in Graph Theory (Szeged, 1978), v. I, II, Colloq. Math. Soc. János Bolyai, 25, North-Holland Publ. Co., Amsterdam–New York, 1981, 405–434 | MR

[12] R. Pöschel, “Untersuchungen von $S$-Ringen insbesondere im Gruppenring von $p$-Gruppen”, Math. Nachr., 60 (1974), 1–27 | DOI | MR | Zbl

[13] S. A. Evdokimov, I. N. Ponomarenko, “Kharakterizatsiya tsiklotomicheskikh skhem i normalnye koltsa Shura nad tsiklicheskoi gruppoi”, Algebra i analiz, 14:2 (2002), 11–55

[14] S. Evdokimov, I. Kovács, I. Ponomarenko, “On Schurity of finite abelian groups”, Commun. Algebra, 44:1 (2016), 101–117 | DOI | MR | Zbl

[15] M. Muzychuk, I. Ponomarenko, “O $2$-gruppakh Shura”, Voprosy teorii predstavlenii algebr i grupp. 28, Zap. nauchn. sem. POMI, 435, POMI, SPb., 2015, 113–162

[16] I. N. Ponomarenko, G. K. Ryabov, “Abelian Schur groups of odd order”, Sib. elektron. matem. izv., 15 (2018), 397–411 http://semr.math.nsc.ru/v15/p397-411.pdf | MR | Zbl

[17] G. K. Ryabov, “On Schur 3-groups”, Sib. elektron. matem. izv., 12 (2015), 223–231 http://semr.math.nsc.ru/v12/p223-231.pdf | MR | Zbl

[18] G. Ryabov, “On Schur $p$-groups of odd order”, J. Algebra Appl., 16:3 (2017), 1750045, 29 pp. | DOI | MR | Zbl

[19] I. Ponomarenko, A. Vasil'ev, “On non-abelian Schur groups”, J. Algebra Appl., 13:8 (2014), 1450055, 22 pp. | DOI | MR | Zbl

[20] M. Ziv-Av, “Enumeration of Schur rings over small groups”, Computer algebra in scientific computing, CASC 2014, 16th int. workshop (Warsaw, Poland, September 8-12, 2014), Lect. Notes Comput. Sci., 8660, eds. V. P. Gerdt et al., Springer, Berlin, 2014, 491–500 | DOI | MR | Zbl

[21] A. R. Camina, “Some conditions which almost characterize Frobenius groups”, Isr. J. Math., 31:2 (1978), 153–160 | DOI | MR | Zbl

[22] S. A. Evdokimov, I. N. Ponomarenko, “Ob odnom semeistve kolets Shura nad konechnoi tsiklicheskoi gruppoi”, Algebra i analiz, 13:3 (2001), 139–154

[23] D. Gorenstein, Finite groups, 2nd ed., Chelsea Pub. Co, New York, 1980 | MR | Zbl

[24] M. Muzychuk, “Struktura primitivnykh $S$-kolets nad gruppoi $A_5$”, VIII Vsesoyuznaya konf. po teorii grupp, Kiev, 1982, 83–84

[25] M. Klin, M. Ziv-Av, “Enumeration of Schur rings over the group $A_5$”, Computer algebra in scientific computing, 15th int. workshop CASC 2013 (Berlin, Germany, September 9-13, 2013), Lect. Notes Comput. Sci., 8136, eds. V. P. Gerdt et al., Springer, Berlin, 2013, 219–230 | DOI | MR | Zbl