Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2023_62_2_a2, author = {R. I. Zhukov and A. V. Greshnov}, title = {Horizontal joinability on $5$-dimensional $2$-step {Carnot} groups with a codimension $2$ horizontal distribution}, journal = {Algebra i logika}, pages = {205--218}, publisher = {mathdoc}, volume = {62}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a2/} }
TY - JOUR AU - R. I. Zhukov AU - A. V. Greshnov TI - Horizontal joinability on $5$-dimensional $2$-step Carnot groups with a codimension $2$ horizontal distribution JO - Algebra i logika PY - 2023 SP - 205 EP - 218 VL - 62 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2023_62_2_a2/ LA - ru ID - AL_2023_62_2_a2 ER -
%0 Journal Article %A R. I. Zhukov %A A. V. Greshnov %T Horizontal joinability on $5$-dimensional $2$-step Carnot groups with a codimension $2$ horizontal distribution %J Algebra i logika %D 2023 %P 205-218 %V 62 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2023_62_2_a2/ %G ru %F AL_2023_62_2_a2
R. I. Zhukov; A. V. Greshnov. Horizontal joinability on $5$-dimensional $2$-step Carnot groups with a codimension $2$ horizontal distribution. Algebra i logika, Tome 62 (2023) no. 2, pp. 205-218. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a2/
[1] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint. Control Theory and Optimization II, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR
[2] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[3] M. M. Postnikov, Gruppy i algebry Li, Nauka, M., 1982 | MR
[4] L. P. Rothchild, E. M. Stein, “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137:1976 (1977), 247–320 | MR
[5] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monogr. Math., Springer, New York, NY, 2007 | MR | Zbl
[6] P. Pansu, “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. Math. (2), 129:1 (1989), 1–60 | DOI | MR | Zbl
[7] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint. With an appendix by Igor Zelenko, Camb. Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020 | MR | Zbl
[8] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Proc. of the satellite meeting of the 1st European congr. math. "‘Journées nonholonomes: géométrie sous-riemannienne, théorie du contrôle, robotique"’ (Paris, France, June 30-July 1, 1992), Birkhäuser. Prog. Math., 144, eds. A. Bella{\" i}che et al., Birkhäuser, Basel, 1996, 79–323 | MR | Zbl
[9] A. Nagel, E. M. Stein, S. Wainger, “Balls and metrics defined by vector fields. I: Basic properties”, Acta Math., 155 (1985), 103–147 | DOI | MR | Zbl
[10] S. K. Vodopyanov, A. V. Greshnov, “O differentsiruemosti otobrazhenii prostranstv Karno–Karateodori”, Dokl. AN, 389:5 (2003), 592–596 | MR | Zbl
[11] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-kvazimetricheskie prostranstva. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. matem., 82:2 (2018), 3–32 | DOI | MR | Zbl
[12] A. V. Greshnov, “$(q_1,q_2)$-Kvazimetriki, bilipshitsevo ekvivalentnye $1$-kvazimetrikam”, Matem. tr., 20:1 (2017), 81–96 | MR | Zbl
[13] A. V. Greshnov, M. V. Tryamkin, “Tochnye znacheniya konstant v obobschennom neravenstve treugolnika dlya nekotorykh $(1,q_2)$-kvazimetrik na kanonicheskikh gruppakh Karno”, Matem. zametki, 98:4 (2015), 635–639 | DOI | Zbl
[14] A. V. Greshnov, “Regulyarizatsiya funktsii rasstoyaniya i aksiomy otdelimosti na $(q_1,q_2)$-kvazimetricheskikh prostranstvakh”, Sib. elektron. matem. izv., 14 (2017), 765–773 http://semr.math.nsc.ru/v14/p765-773.pdf | MR | Zbl
[15] A. V. Greshnov, “Lokalnaya approksimatsiya ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori ikh kasatelnymi konusami”, Sib. matem. zh., 48:2 (2007), 290–312 | MR | Zbl
[16] A. V. Greshnov, “Dokazatelstvo teoremy Gromova ob odnorodnoi nilpotentnoi approksimatsii dlya vektornykh polei klassa $C^1$”, Matem. tr., 15:2 (2012), 72–88 | Zbl
[17] A. Greshnov, “Optimal horizontal joinability on the Engel group”, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., 32:3 (2021), 535–547 | DOI | MR | Zbl
[18] A. V. Greshnov, R. I. Zhukov, “Gorizontalnaya soedinimost na kanonicheskoi 3-stupenchatoi gruppe Karno s gorizontalnym raspredeleniem koranga 2”, Sib. matem. zh., 62:4 (2021), 736–746 | Zbl
[19] A. V. Greshnov, “Metod Agracheva–Barilari–Boskaina i otsenki chisla zvenev u gorizontalnykh lomanykh, soedinyayuschikh tochki v kanonicheskoi gruppe Karno $G_{3,3}$”, Optimalnoe upravlenie i dinamicheskie sistemy. K 95-letiyu akad. R. V. Gamkrelidze, Trudy MIAN, 321, MIAN, M., 2023, 108–117 | DOI