Horizontal joinability on $5$-dimensional $2$-step Carnot groups with a codimension $2$ horizontal distribution
Algebra i logika, Tome 62 (2023) no. 2, pp. 205-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a $5$-dimensional $2$-step Carnot group $G_{3,2}$ with a codimension $2$ horizontal distribution, we prove that any two points $u,v\in G_{3,2}$ can be joined on it by a horizontal broken line consisting of at most three segments. A multi-dimensional generalization of this result is given.
Mots-clés : Carnot group
Keywords: codimension horizontal distribution, horizontal broken line.
@article{AL_2023_62_2_a2,
     author = {R. I. Zhukov and A. V. Greshnov},
     title = {Horizontal joinability on $5$-dimensional $2$-step {Carnot} groups with a codimension $2$ horizontal distribution},
     journal = {Algebra i logika},
     pages = {205--218},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a2/}
}
TY  - JOUR
AU  - R. I. Zhukov
AU  - A. V. Greshnov
TI  - Horizontal joinability on $5$-dimensional $2$-step Carnot groups with a codimension $2$ horizontal distribution
JO  - Algebra i logika
PY  - 2023
SP  - 205
EP  - 218
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_2_a2/
LA  - ru
ID  - AL_2023_62_2_a2
ER  - 
%0 Journal Article
%A R. I. Zhukov
%A A. V. Greshnov
%T Horizontal joinability on $5$-dimensional $2$-step Carnot groups with a codimension $2$ horizontal distribution
%J Algebra i logika
%D 2023
%P 205-218
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_2_a2/
%G ru
%F AL_2023_62_2_a2
R. I. Zhukov; A. V. Greshnov. Horizontal joinability on $5$-dimensional $2$-step Carnot groups with a codimension $2$ horizontal distribution. Algebra i logika, Tome 62 (2023) no. 2, pp. 205-218. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a2/

[1] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint. Control Theory and Optimization II, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR

[2] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[3] M. M. Postnikov, Gruppy i algebry Li, Nauka, M., 1982 | MR

[4] L. P. Rothchild, E. M. Stein, “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137:1976 (1977), 247–320 | MR

[5] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monogr. Math., Springer, New York, NY, 2007 | MR | Zbl

[6] P. Pansu, “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. Math. (2), 129:1 (1989), 1–60 | DOI | MR | Zbl

[7] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint. With an appendix by Igor Zelenko, Camb. Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020 | MR | Zbl

[8] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Proc. of the satellite meeting of the 1st European congr. math. "‘Journées nonholonomes: géométrie sous-riemannienne, théorie du contrôle, robotique"’ (Paris, France, June 30-July 1, 1992), Birkhäuser. Prog. Math., 144, eds. A. Bella{\" i}che et al., Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[9] A. Nagel, E. M. Stein, S. Wainger, “Balls and metrics defined by vector fields. I: Basic properties”, Acta Math., 155 (1985), 103–147 | DOI | MR | Zbl

[10] S. K. Vodopyanov, A. V. Greshnov, “O differentsiruemosti otobrazhenii prostranstv Karno–Karateodori”, Dokl. AN, 389:5 (2003), 592–596 | MR | Zbl

[11] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-kvazimetricheskie prostranstva. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. matem., 82:2 (2018), 3–32 | DOI | MR | Zbl

[12] A. V. Greshnov, “$(q_1,q_2)$-Kvazimetriki, bilipshitsevo ekvivalentnye $1$-kvazimetrikam”, Matem. tr., 20:1 (2017), 81–96 | MR | Zbl

[13] A. V. Greshnov, M. V. Tryamkin, “Tochnye znacheniya konstant v obobschennom neravenstve treugolnika dlya nekotorykh $(1,q_2)$-kvazimetrik na kanonicheskikh gruppakh Karno”, Matem. zametki, 98:4 (2015), 635–639 | DOI | Zbl

[14] A. V. Greshnov, “Regulyarizatsiya funktsii rasstoyaniya i aksiomy otdelimosti na $(q_1,q_2)$-kvazimetricheskikh prostranstvakh”, Sib. elektron. matem. izv., 14 (2017), 765–773 http://semr.math.nsc.ru/v14/p765-773.pdf | MR | Zbl

[15] A. V. Greshnov, “Lokalnaya approksimatsiya ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori ikh kasatelnymi konusami”, Sib. matem. zh., 48:2 (2007), 290–312 | MR | Zbl

[16] A. V. Greshnov, “Dokazatelstvo teoremy Gromova ob odnorodnoi nilpotentnoi approksimatsii dlya vektornykh polei klassa $C^1$”, Matem. tr., 15:2 (2012), 72–88 | Zbl

[17] A. Greshnov, “Optimal horizontal joinability on the Engel group”, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., 32:3 (2021), 535–547 | DOI | MR | Zbl

[18] A. V. Greshnov, R. I. Zhukov, “Gorizontalnaya soedinimost na kanonicheskoi 3-stupenchatoi gruppe Karno s gorizontalnym raspredeleniem koranga 2”, Sib. matem. zh., 62:4 (2021), 736–746 | Zbl

[19] A. V. Greshnov, “Metod Agracheva–Barilari–Boskaina i otsenki chisla zvenev u gorizontalnykh lomanykh, soedinyayuschikh tochki v kanonicheskoi gruppe Karno $G_{3,3}$”, Optimalnoe upravlenie i dinamicheskie sistemy. K 95-letiyu akad. R. V. Gamkrelidze, Trudy MIAN, 321, MIAN, M., 2023, 108–117 | DOI