Varieties of exponential $R$-groups
Algebra i logika, Tome 62 (2023) no. 2, pp. 179-204

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of an exponential $R$-group, where $R$ is an arbitrary associative ring with unity, was introduced by R. Lyndon. Myasnikov and Remeslennikov refined the notion of an $R$-group by introducing an additional axiom. In particular, the new concept of an exponential $M R$-group ($R$-ring) is a direct generalization of the concept of an $R$-module to the case of noncommutative groups. We come up with the notions of a variety of $M R$-groups and of tensor completions of groups in varieties. Abelian varieties of $M R$-groups are described, and various definitions of nilpotency in this category are compared. It turns out that the completion of a $2$-step nilpotent $M R$-group is $2$-step nilpotent.
Keywords: Lyndon's $R$-group, varietiy of $M R$-groups, $\alpha$-commutator, nilpotent $M R$-group, tensor completion.
Mots-clés : $M R$-group, $R$-commutant
@article{AL_2023_62_2_a1,
     author = {M. G. Amaglobeli and A. G. Myasnikov and T. T. Nadiradze},
     title = {Varieties of exponential $R$-groups},
     journal = {Algebra i logika},
     pages = {179--204},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a1/}
}
TY  - JOUR
AU  - M. G. Amaglobeli
AU  - A. G. Myasnikov
AU  - T. T. Nadiradze
TI  - Varieties of exponential $R$-groups
JO  - Algebra i logika
PY  - 2023
SP  - 179
EP  - 204
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_2_a1/
LA  - ru
ID  - AL_2023_62_2_a1
ER  - 
%0 Journal Article
%A M. G. Amaglobeli
%A A. G. Myasnikov
%A T. T. Nadiradze
%T Varieties of exponential $R$-groups
%J Algebra i logika
%D 2023
%P 179-204
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_2_a1/
%G ru
%F AL_2023_62_2_a1
M. G. Amaglobeli; A. G. Myasnikov; T. T. Nadiradze. Varieties of exponential $R$-groups. Algebra i logika, Tome 62 (2023) no. 2, pp. 179-204. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a1/