The complexity of inversion in groups
Algebra i logika, Tome 62 (2023) no. 2, pp. 155-178

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if ${\mathscr A}=(A,\cdot)$ is a group computable in polynomial time (${\rm P}$-computable), then there exists a ${\rm P}$-computable group ${\mathscr B}=(B,\cdot)\cong{\mathscr A}$, in which the operation $x^{-1}$ is also ${\rm P}$-computable. On the other hand, we show that if the center $Z({\mathscr A})$ of a group ${\mathscr A}$ contains an element of infinite order, then under some additional assumptions, there exists a ${\rm P}$-computable group ${\mathscr B}'=(B',\cdot)\cong{\mathscr A}$, in which the operation $x^{-1}$ is not primitive recursive. Also the following general fact in the theory of ${\rm P}$-computable structures is stated: if ${\mathscr A}$ is a ${\rm P}$-computable structure and $E\subseteq A^{2}$ is a ${\rm P}$-computable congruence on ${\mathscr A}$, then the quotient structure ${\mathscr A} / E$ is isomorphic to a ${\rm P}$-computable structure.
Keywords: computable group, inversion operations, primitive recursive function
Mots-clés : quotient structure.
@article{AL_2023_62_2_a0,
     author = {P. E. Alaev},
     title = {The complexity of inversion in groups},
     journal = {Algebra i logika},
     pages = {155--178},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - The complexity of inversion in groups
JO  - Algebra i logika
PY  - 2023
SP  - 155
EP  - 178
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_2_a0/
LA  - ru
ID  - AL_2023_62_2_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T The complexity of inversion in groups
%J Algebra i logika
%D 2023
%P 155-178
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_2_a0/
%G ru
%F AL_2023_62_2_a0
P. E. Alaev. The complexity of inversion in groups. Algebra i logika, Tome 62 (2023) no. 2, pp. 155-178. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a0/