Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2023_62_2_a0, author = {P. E. Alaev}, title = {The complexity of inversion in groups}, journal = {Algebra i logika}, pages = {155--178}, publisher = {mathdoc}, volume = {62}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a0/} }
P. E. Alaev. The complexity of inversion in groups. Algebra i logika, Tome 62 (2023) no. 2, pp. 155-178. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a0/
[1] D. Cenzer, J. Remmel, “Polynomial-time versus recursive models”, Ann. Pure Appl. Logic, 54:1 (1991), 17–58 | DOI | MR | Zbl
[2] D. Cenzer, J. Remmel, “Polynomial-time Abelian groups”, Ann. Pure Appl. Logic, 56:1–3 (1992), 313–363 | DOI | MR | Zbl
[3] P. E. Alaev, “Struktury, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 55:6 (2016), 647–669 | MR
[4] P. E. Alaev, “Polinomialno vychislimye struktury s konechnym chislom porozhdayuschikh”, Algebra i logika, 59:3 (2020), 385–394 | MR | Zbl
[5] P. E. Alaev, “Konechno porozhdennye struktury, vychislimye za polinomialnoe vremya”, Sib. matem. zh., 63:5 (2022), 953–974
[6] P. E. Alaev, V. L. Selivanov, “Polya algebraicheskikh chisel, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 58:6 (2019), 673–705 | MR
[7] D. Cenzer, J. B. Remmel, “Complexity theoretic model theory and algebra”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 381–513 | DOI | MR | Zbl
[8] N. Bazhenov, M. Harrison-Trainor, I. Kalimullin, A. Melnikov, K. M. Ng, “Automatic and polynomial-time algebraic structures”, J. Symb. Log., 84:4 (2019), 1630–1669 | DOI | MR | Zbl
[9] P. E. Alaev, V. L. Selivanov, “Polya algebraicheskikh chisel, vychislimye za polinomialnoe vremya. II”, Algebra i logika, 60:6 (2021), 533–548 | MR
[10] P. E. Alaev, V. L. Selivanov, “Searching for applicable versions of computable structures”, Connecting with computability, 17th conf. on computability in Europe, CiE 2021, Proc. (virtual event, Ghent, Belgium, July 5–9, 2021), Lect. Notes Comput. Sci., 12813, eds. L. De Mol et al., Springer, Cham, 2021, 1–11 | DOI | MR
[11] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Ser. Comput. Sci. Inform. Process., Addison-Wesley Publ. Co, Reading, Mass. etc., 1974 | MR | Zbl
[12] I. Kalimullin, A. Melnikov, K. M. Ng, “Algebraic structures computable without delay”, Theoret. Comput. Sci., 674 (2017), 73–98 | DOI | MR | Zbl