Finite groups with a soluble group of coprime automorphisms whose fixed points have bounded Engel sinks
Algebra i logika, Tome 62 (2023) no. 1, pp. 114-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that a finite group $G$ admits a soluble group of coprime automorphisms $A$. We prove that if, for some positive integer $m$, every element of the centralizer $C_G(A)$ has a left Engel sink of cardinality at most $m$ (or a right Engel sink of cardinality at most $m$), then $G$ has a subgroup of $(|A|,m)$-bounded index which has Fitting height at most $2\alpha (A)+2$, where $\alpha (A)$ is the composition length of $A$. We also prove that if, for some positive integer $r$, every element of the centralizer $C_G(A)$ has a left Engel sink of rank at most $r$ (or a right Engel sink of rank at most $r$), then $G$ has a subgroup of $(|A|,r)$-bounded index which has Fitting height at most $4^{\alpha (A)}+4\alpha (A)+3$. Here, a left Engel sink of an element $g$ of a group $G$ is a set ${\mathscr E}(g)$ such that for every $x\in G$ all sufficiently long commutators $[...[[x,g],g],\dots,g]$ belong to ${\mathscr E}(g)$. (Thus, $g$ is a left Engel element precisely when we can choose ${\mathscr E}(g)=\{ 1\}$.) A right Engel sink of an element $g$ of a group $G$ is a set ${\mathscr R}(g)$ such that for every $x\in G$ all sufficiently long commutators $[...[[g,x],x],\dots,x]$ belong to ${\mathscr R}(g)$. Thus, $g$ is a right Engel element precisely when we can choose ${\mathscr R}(g)=\{ 1\}$.
Keywords: Engel condition, Fitting subgroup, Fitting height
Mots-clés : automorphism.
@article{AL_2023_62_1_a8,
     author = {E. I. Khukhro and P. Shumyatskii},
     title = {Finite groups with a soluble group of coprime automorphisms whose fixed points have bounded {Engel} sinks},
     journal = {Algebra i logika},
     pages = {114--134},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_1_a8/}
}
TY  - JOUR
AU  - E. I. Khukhro
AU  - P. Shumyatskii
TI  - Finite groups with a soluble group of coprime automorphisms whose fixed points have bounded Engel sinks
JO  - Algebra i logika
PY  - 2023
SP  - 114
EP  - 134
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_1_a8/
LA  - ru
ID  - AL_2023_62_1_a8
ER  - 
%0 Journal Article
%A E. I. Khukhro
%A P. Shumyatskii
%T Finite groups with a soluble group of coprime automorphisms whose fixed points have bounded Engel sinks
%J Algebra i logika
%D 2023
%P 114-134
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_1_a8/
%G ru
%F AL_2023_62_1_a8
E. I. Khukhro; P. Shumyatskii. Finite groups with a soluble group of coprime automorphisms whose fixed points have bounded Engel sinks. Algebra i logika, Tome 62 (2023) no. 1, pp. 114-134. http://geodesic.mathdoc.fr/item/AL_2023_62_1_a8/

[1] J. Thompson, “Finite groups with fixed-point-free automorphisms of prime order”, Proc. Natl. Acad. Sci. USA, 45 (1959), 578–581 | DOI | MR | Zbl

[2] P. Rowley, “Finite groups admitting a fixed-point-free automorphism group”, J. Algebra, 174:2 (1995), 724–727 | DOI | MR | Zbl

[3] J. G. Thompson, “Automorphisms of solvable groups”, J. Algebra, 1 (1964), 259–267 | DOI | MR | Zbl

[4] A. Turull, “Character theory and length problems”, Finite and locally finite groups, Proc. NATO Adv. Study Inst. (Istanbul, Turkey, 14-27 August 1994), NATO ASI Ser., Ser. C, Math. Phys. Sci., 471, eds. B. Hartley et al., Kluwer Academic Publ., Dordrecht, 1995, 377–400 | MR | Zbl

[5] B. Hartley, I. M. Isaacs, “On characters and fixed points of coprime operator groups”, J. Algebra, 131:1 (1990), 342–358 | DOI | MR | Zbl

[6] S. D. Bell, B. Hartley, “A note on fixed-point-free actions of finite groups”, Q. J. Math., Oxf. II. Ser., 41:162 (1990), 127–130 | DOI | MR | Zbl

[7] E. C. Dade, “Carter subgroups and Fitting heights of finite solvable groups”, Ill. J. Math., 13 (1969), 449–514 | MR | Zbl

[8] E. I. Khukhro, V. D. Mazurov, “Finite groups with an automorphism of prime order whose centralizer has small rank”, J. Algebra, 301:2 (2006), 474–492 | DOI | MR | Zbl

[9] E. I. Khukhro, V. D. Mazurov, “Automorphisms with centralizers of small rank”, Groups St. Andrews 2005, Sel. papers conf. (St. Andrews, UK, July 30-August 6, 2005), v. II, London Math. Soc. Lecture Note Ser., 340, eds. C. M. Campbell et al., Cambridge Univ. Press, Cambridge, 2007, 564–585 | MR | Zbl

[10] V. D. Mazurov, E. I. Khukhro, “Gruppy s avtomorfizmom prostogo poryadka, rang tsentralizatora kotorogo ogranichen”, DAN, 402:6 (2005), 740–742 | MR | Zbl

[11] V. D. Mazurov, E. I. Khukhro, “O gruppakh, dopuskayuschikh gruppu avtomorfizmov, rang tsentralizatora kotoroi ogranichen”, Sib. elektron. matem. izv., 3 (2006), 257–283 http://semr.math.nsc.ru/v3/p257-283.pdf | Zbl

[12] D. J. S. Robinson, A course in the theory of groups, Grad. Texts Math., 80, Springer-Verlag, New York, NY, 1995 | MR | Zbl

[13] Y. M. Wang, Z. M. Chen, “Solubility of finite groups admitting a coprime order operator group”, Boll. Unione Mat. Ital., VII. Ser., A 7, 1993, no. 3, 325–331 | MR

[14] A. Turull, “Fitting height of groups and of fixed points”, J. Algebra, 86 (1984), 555–566 | DOI | MR | Zbl

[15] E. I. Khukhro, P. Shumyatsky, “On finite groups with an automorphism of prime order whose fixed points have bounded Engel sinks”, Bull. Braz. Math. Soc. (N. S.), 53:1 (2022), 33–47 | DOI | MR | Zbl

[16] C. Acciarri, E. I. Khukhro, P. Shumyatsky, “Profinite groups with an automorphism whose fixed points are right Engel”, Proc. Am. Math. Soc., 147:9 (2019), 3691–3703 | DOI | MR | Zbl

[17] C. Acciarri, P. Shumyatsky, D. S. da Silveira, “On groups with automorphisms whose fixed points are Engel”, Ann. Matem. Pura Appl. (4), 197:1 (2018), 307–316 | DOI | MR | Zbl

[18] C. Acciarri, P. Shumyatsky, D. Silveira, “Engel sinks of fixed points in finite groups”, J. Pure Appl. Algebra, 223:11 (2019), 4592–4601 | DOI | MR | Zbl

[19] C. Acciarri, D. S. da Silveira, “Profinite groups and centralizers of coprime automorphisms whose elements are Engel”, J. Group Theory, 21:3 (2018), 485–509 | DOI | MR | Zbl

[20] C. Acciarri, D. Silveira, “Engel-like conditions in fixed points of automorphisms of profinite groups”, Ann. Mat. Pura Appl. (4), 199:1 (2020), 187–197 | DOI | MR | Zbl

[21] E. I. Khukhro, P. Shumyatsky, “On profinite groups with automorphisms whose fixed points have countable Engel sinks”, Israel J. Math., 247:1 (2022), 303–330 | DOI | MR | Zbl

[22] E. I. Khukhro, P. Shumyatsky, “Almost Engel finite and profinite groups”, Int. J. Algebra Comput., 26:5 (2016), 973–983 | DOI | MR | Zbl

[23] E. I. Khukhro, P. Shumyatsky, “Almost Engel compact groups”, J. Algebra, 500 (2018), 439–456 | DOI | MR | Zbl

[24] E. I. Khukhro, P. Shumyatsky, “Finite groups with Engel sinks of bounded rank”, Glasg. Math. J., 60:3 (2018), 695–701 | DOI | MR | Zbl

[25] E. I. Khukhro, P. Shumyatsky, “Compact groups in which all elements are almost right Engel”, Q. J. Math., 70:3 (2019), 879–893 | DOI | MR | Zbl

[26] E. I. Khukhro, P. Shumyatsky, “Compact groups with countable Engel sinks”, Bull. Math. Sci., 11:3 (2021), 2050015, 28 pp. | DOI | MR

[27] E. I. Khukhro, P. Shumyatsky, “Compact groups in which all elements have countable right Engel sinks”, Proc. R. Soc. Edinb., Sect. A, Math., 151:6 (2021), 1790–1814 | DOI | MR

[28] E. I. Khukhro, P. Shumyatsky, G. Traustason, “Right Engel-type subgroups and length parameters of finite groups”, J. Aust. Math. Soc., 109:3 (2020), 340–350 | DOI | MR | Zbl

[29] J. S. Wilson, E. I. Zelmanov, “Identities for Lie algebras of pro-$p$ groups”, J. Pure Appl. Algebra, 81:1 (1992), 103–109 | DOI | MR | Zbl

[30] E. S. Golod, “O nil-algebrakh i finitno-approksimiruemykh $p$-gruppakh”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 273–276

[31] L. G. Kovács, “On finite soluble groups”, Math. Z., 103 (1968), 37–39 | DOI | MR | Zbl

[32] R. M. Guralnick, “On the number of generators of a finite group”, Arch. Math., 53:6 (1989), 521–523 | DOI | MR | Zbl

[33] A. Lucchini, “A bound on the number of generators of a finite group”, Arch. Math., 53:4 (1989), 313–317 | DOI | MR | Zbl

[34] P. Longobardi, M. Maj, “On the number of generators of a finite group”, Arch. Math., 50:2 (1988), 110–112 | DOI | MR | Zbl

[35] Yu. M. Gorchakov, “O suschestvovanii abelevykh podgrupp beskonechnogo ranga v lokalno razreshimykh gruppakh”, Dokl. AN SSSR, 156:1 (1964), 17–20 | Zbl

[36] Yu. I. Merzlyakov, “O lokalno razreshimykh gruppakh konechnogo ranga”, Algebra i logika, 3:2 (1964), 5–16 | MR | Zbl

[37] J. E. Roseblade, “On groups in which every subgroup is subnormal”, J. Algebra, 2 (1965), 402–412 | DOI | MR | Zbl

[38] H. Heineken, “Eine Bemerkung über engelsche Elemente”, Arch. Math., 11 (1960), 321 | DOI | MR | Zbl

[39] B. Huppert, Endliche Gruppen, v. I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin a.o., 1967 | DOI | MR | Zbl

[40] R. M. Guralnick, G. Tracey, “On the generalized Fitting height and insoluble length of finite groups”, Bull. Lond. Math. Soc., 52:5 (2020), 924–931 | DOI | MR | Zbl

[41] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[42] D. Gorenstein, Finite groups, 2nd ed., Chelsea Publ. Co, 1980 | MR | Zbl