Generic types and generic elements in divisible rigid groups
Algebra i logika, Tome 62 (2023) no. 1, pp. 102-113

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is said to be $m$-rigid if it contains a normal series of the form $$G=G_1>G_2>\ldots>G_m>G_{m+1}=1,$$ whose quotients $G_i/G_{i+1}$ are Abelian and, treated as (right) ${\mathbb{Z}}[G/G_i]$-modules, are torsion-free. A rigid group $G$ is said to be divisible if elements of the quotient $\rho_i(G)/\rho_{i+1}(G)$ are divisible by nonzero elements of the ring ${\mathbb{Z}}[G/\rho_i(G)]$. Previously, it was proved that the theory of divisible $m$-rigid groups is complete and $\omega$-stable. In the present paper, we give an algebraic description of elements and types that are generic over a divisible $m$-rigid group $G$.
Mots-clés : divisible $m$-rigid group
Keywords: generic type, generic element.
@article{AL_2023_62_1_a7,
     author = {A. G. Myasnikov and N. S. Romanovskii},
     title = {Generic types and generic elements in divisible rigid groups},
     journal = {Algebra i logika},
     pages = {102--113},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_1_a7/}
}
TY  - JOUR
AU  - A. G. Myasnikov
AU  - N. S. Romanovskii
TI  - Generic types and generic elements in divisible rigid groups
JO  - Algebra i logika
PY  - 2023
SP  - 102
EP  - 113
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_1_a7/
LA  - ru
ID  - AL_2023_62_1_a7
ER  - 
%0 Journal Article
%A A. G. Myasnikov
%A N. S. Romanovskii
%T Generic types and generic elements in divisible rigid groups
%J Algebra i logika
%D 2023
%P 102-113
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_1_a7/
%G ru
%F AL_2023_62_1_a7
A. G. Myasnikov; N. S. Romanovskii. Generic types and generic elements in divisible rigid groups. Algebra i logika, Tome 62 (2023) no. 1, pp. 102-113. http://geodesic.mathdoc.fr/item/AL_2023_62_1_a7/