Generic types and generic elements in divisible rigid groups
Algebra i logika, Tome 62 (2023) no. 1, pp. 102-113
Voir la notice de l'article provenant de la source Math-Net.Ru
A group $G$ is said to be $m$-rigid if it contains a normal series of the form $$G=G_1>G_2>\ldots>G_m>G_{m+1}=1,$$ whose quotients $G_i/G_{i+1}$ are Abelian and, treated as (right) ${\mathbb{Z}}[G/G_i]$-modules, are torsion-free. A rigid group $G$ is said to be divisible if elements of the quotient $\rho_i(G)/\rho_{i+1}(G)$ are divisible by nonzero elements of the ring ${\mathbb{Z}}[G/\rho_i(G)]$. Previously, it was proved that the theory of divisible $m$-rigid groups is complete and $\omega$-stable. In the present paper, we give an algebraic description of elements and types that are generic over a divisible $m$-rigid group $G$.
Mots-clés :
divisible $m$-rigid group
Keywords: generic type, generic element.
Keywords: generic type, generic element.
@article{AL_2023_62_1_a7,
author = {A. G. Myasnikov and N. S. Romanovskii},
title = {Generic types and generic elements in divisible rigid groups},
journal = {Algebra i logika},
pages = {102--113},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2023_62_1_a7/}
}
A. G. Myasnikov; N. S. Romanovskii. Generic types and generic elements in divisible rigid groups. Algebra i logika, Tome 62 (2023) no. 1, pp. 102-113. http://geodesic.mathdoc.fr/item/AL_2023_62_1_a7/