Shunkov groups saturated with almost simple groups
Algebra i logika, Tome 62 (2023) no. 1, pp. 93-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is called a Shunkov group (a conjugate biprimitive finite group) if, for any of its finite subgroups $H$ in the factor group $N_G(H)/H$, every two conjugate elements of prime order generate a finite subgroup. We say that a group is saturated with groups from the set $\mathfrak{M}$ if any finite subgroup of the given group is contained in its subgroup isomorphic to some group in $\mathfrak{M}$. We show that a Shunkov group $G$ which is saturated with groups from the set $\mathfrak{M}$ possessing specific properties, and contains an involution $z$ with the property that the centralizer $C_G(z)$ has only finitely many elements of finite order will have a periodic part isomorphic to one of the groups in $\mathfrak{M}$. In particular, a Shunkov group $G$ that is saturated with finite almost simple groups and contains an involution $z$ with the property that the centralizer $C_G(z)$ has only finitely many elements of finite order will have a periodic part isomorphic to a finite almost simple group.
Keywords: Shunkov group, saturated set, almost simple group.
@article{AL_2023_62_1_a6,
     author = {N. V. Maslova and A. A. Shlepkin},
     title = {Shunkov groups saturated with almost simple groups},
     journal = {Algebra i logika},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_1_a6/}
}
TY  - JOUR
AU  - N. V. Maslova
AU  - A. A. Shlepkin
TI  - Shunkov groups saturated with almost simple groups
JO  - Algebra i logika
PY  - 2023
SP  - 93
EP  - 101
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_1_a6/
LA  - ru
ID  - AL_2023_62_1_a6
ER  - 
%0 Journal Article
%A N. V. Maslova
%A A. A. Shlepkin
%T Shunkov groups saturated with almost simple groups
%J Algebra i logika
%D 2023
%P 93-101
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_1_a6/
%G ru
%F AL_2023_62_1_a6
N. V. Maslova; A. A. Shlepkin. Shunkov groups saturated with almost simple groups. Algebra i logika, Tome 62 (2023) no. 1, pp. 93-101. http://geodesic.mathdoc.fr/item/AL_2023_62_1_a6/

[1] V. B. Go, D. V. Lytkina, V. D. Mazurov, “O periodicheskikh gruppakh, nasyschennykh konechnymi prostymi gruppami $L_4(q)$”, Algebra i logika, 60:6 (2021), 549–556

[2] D. V. Lytkina, A. I. Sozutov, A. A. Shlepkin, “Periodicheskie gruppy 2-ranga dva, nasyschennye konechnymi prostymi gruppami”, Sib. elektron. matem. izv., 15 (2018), 786–796 | MR | Zbl

[3] D. V. Lytkina, V. D. Mazurov, “Lokalnaya konechnost periodicheskoi gruppy, nasyschennoi konechnymi prostymi ortogonalnymi gruppami nechetnoi razmernosti”, Sib. matem. zh., 62:3 (2021), 572–578

[4] B. E. Durakov, A. I. Sozutov, “On periodic groups saturated with finite Frobenius groups”, Izv. Irkutskogo gos. un-ta. Ser. Matem., 35 (2021), 73–86 | MR | Zbl

[5] A. A. Shlepkin, “Groups with a strongly embedded subgroup saturated with finite simple non-abelian groups”, Izv. Irkutskogo gos. un-ta. Ser. Matem., 31 (2020), 132–141 | MR | Zbl

[6] V. P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–493

[7] V. V. Belyaev, “Gruppy s pochti regulyarnoi involyutsiei”, Algebra i logika, 26:5 (1987), 531–535 | MR

[8] A. I. Sozutov, “O gruppakh s pochti sovershennoi involyutsiei”, Gruppy i grafy, Sb. nauch. trudov, Tr. IMM UrO RAN, 13, no. 1, 2007, 183–190 | Zbl

[9] A. A. Shlepkin, “On a sufficient condition when an infinite group is not simple”, Zhurn. SFU. Ser. Matem. i fiz., 11:1 (2018), 103–107 | MR

[10] A. K. Shlepkin, “O nekotorykh periodicheskikh gruppakh, nasyschennykh konechnymi prostymi gruppami”, Matem. tr., 1:1 (1998), 129–138 | MR | Zbl

[11] M. Aschbacher, “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl

[12] A. K. Shlepkin, “O sopryazhenno biprimitivno konechnykh gruppakh s usloviem primarnoi minimalnosti”, Algebra i logika, 22:2 (1983), 226–231 | MR | Zbl

[13] P. J. Cameron, N. V. Maslova, “Criterion of unrecognizability of a finite group by its Gruenberg–Kegel graph”, J. Algebra, 607, Part A (2022), 186–213 | DOI | MR | Zbl

[14] P. Fong, “On orders of finite groups and centralizers of $p$-elements”, Osaka J. Math., 13 (1976), 483–489 | MR | Zbl