Primitive prime divisors of orders of Suzuki--Ree groups
Algebra i logika, Tome 62 (2023) no. 1, pp. 59-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is a well-known factorization of the number $2^{2m}+1$, with $m$ odd, related to the orders of tori of simple Suzuki groups: $2^{2m}+1$ is a product of $a=2^m+2^{(m+1)/2}+1$ and $b=2^m-2^{(m+1)/2}+1$. By the Bang–Zsigmondy theorem, there is a primitive prime divisor of $2^{4m}-1$, that is, a prime $r$ that divides $2^{4m}-1$ and does not divide $2^i-1$ for any $1\leqslant i4m$. It is easy to see that $r$ divides $2^{2m}+1$, and so it divides one of the numbers $a$ and $b$. It is proved that for every $m>5$, each of $a$, $b$ is divisible by some primitive prime divisor of $2^{4m}-1$. Similar results are obtained for primitive prime divisors related to the simple Ree groups. As an application, we find the independence and 2-independence numbers of the prime graphs of almost simple Suzuki–Ree groups.
Keywords: primitive prime divisor, Suzuki–Ree groups, prime graph.
@article{AL_2023_62_1_a3,
     author = {M. A. Grechkoseeva},
     title = {Primitive prime divisors of orders of {Suzuki--Ree} groups},
     journal = {Algebra i logika},
     pages = {59--70},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_1_a3/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
TI  - Primitive prime divisors of orders of Suzuki--Ree groups
JO  - Algebra i logika
PY  - 2023
SP  - 59
EP  - 70
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_1_a3/
LA  - ru
ID  - AL_2023_62_1_a3
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%T Primitive prime divisors of orders of Suzuki--Ree groups
%J Algebra i logika
%D 2023
%P 59-70
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_1_a3/
%G ru
%F AL_2023_62_1_a3
M. A. Grechkoseeva. Primitive prime divisors of orders of Suzuki--Ree groups. Algebra i logika, Tome 62 (2023) no. 1, pp. 59-70. http://geodesic.mathdoc.fr/item/AL_2023_62_1_a3/

[1] A. S. Bang, “Talteoretiske undersøgelser”, Zeuthen Tidskr. (5), 4 (1886), 70—80

[2] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[3] H. Riesel, Prime numbers and computer methods for factorization, Prog. Math., 126, 2nd ed., Birkhäuser, Boston, MA, 1994 | MR | Zbl

[4] A. Schinzel, “On primitive prime factors of $a^{n}-b^{n}$”, Proc. Camb. Philos. Soc., 58 (1962), 555–562 | DOI | MR | Zbl

[5] G. Higman, “Finite groups in which every element has prime power order”, J. London Math. Soc., 32 (1957), 335–342 | DOI | MR | Zbl

[6] A. V. Vasilev, “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami ee grafa prostykh chisel”, Sib. matem. zh., 46:3 (2005), 511–522 | MR | Zbl

[7] M. A. Grechkoseeva, V. D. Mazurov, W. Shi, A. V. Vasil'ev, N. Yang, “Finite groups isospectral to simple groups”, Commun. Math. Stat., 11:2 (2023), 169–194 | DOI | MR | Zbl

[8] P. J. Cameron, N. V. Maslova, “Criterion of unrecognizability of a finite group by its Gruenberg–Kegel graph”, J. Algebra, 607, Part A (2022), 186–213 | DOI | MR | Zbl

[9] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[10] A. V. Vasilev, E. P. Vdovin, “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[11] M. Roitman, “On Zsigmondy primes”, Proc. Am. Math. Soc., 125:7 (1997), 1913–1919 | DOI | MR | Zbl

[12] V. V. Prasolov, Mnogochleny, 2-e izd., MTsNMO, M., 2001

[13] L. Alpöge, N. M. Katz, G. Navarro, E. A. O'Brien, P. H. Tiep, Local systems and Suzuki groups, http://web.math.princeton.edu/ñmk/kt21_45bis.pdf

[14] M. Suzuki, “On class of double transitive groups”, Ann. Math. (2), 75:1 (1962), 105–145 | DOI | MR | Zbl

[15] R. Ree, “A family of simple groups associated with the simple Lie algebra of type $({F}_{4})$”, Am. J. Math., 83:3 (1961), 401–420 | DOI | MR | Zbl

[16] R. Ree, “A family of simple groups associated with the simple Lie algebra of type $({G}_{2})$”, Am. J. Math., 83:3 (1961), 432–462 | DOI | MR | Zbl

[17] D. Gorenstein, R. Lyons, R. Solomon, “Almost simple $K$-groups”, The classification of the finite simple groups, Chapter A, v. I, Math. Surv. Monogr., 40.3, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl