Primitive prime divisors of orders of Suzuki–Ree groups
Algebra i logika, Tome 62 (2023) no. 1, pp. 59-70

Voir la notice de l'article provenant de la source Math-Net.Ru

There is a well-known factorization of the number $2^{2m}+1$, with $m$ odd, related to the orders of tori of simple Suzuki groups: $2^{2m}+1$ is a product of $a=2^m+2^{(m+1)/2}+1$ and $b=2^m-2^{(m+1)/2}+1$. By the Bang–Zsigmondy theorem, there is a primitive prime divisor of $2^{4m}-1$, that is, a prime $r$ that divides $2^{4m}-1$ and does not divide $2^i-1$ for any $1\leqslant i4m$. It is easy to see that $r$ divides $2^{2m}+1$, and so it divides one of the numbers $a$ and $b$. It is proved that for every $m>5$, each of $a$, $b$ is divisible by some primitive prime divisor of $2^{4m}-1$. Similar results are obtained for primitive prime divisors related to the simple Ree groups. As an application, we find the independence and 2-independence numbers of the prime graphs of almost simple Suzuki–Ree groups.
Keywords: primitive prime divisor, Suzuki–Ree groups, prime graph.
@article{AL_2023_62_1_a3,
     author = {M. A. Grechkoseeva},
     title = {Primitive prime divisors of orders of {Suzuki{\textendash}Ree} groups},
     journal = {Algebra i logika},
     pages = {59--70},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_1_a3/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
TI  - Primitive prime divisors of orders of Suzuki–Ree groups
JO  - Algebra i logika
PY  - 2023
SP  - 59
EP  - 70
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_1_a3/
LA  - ru
ID  - AL_2023_62_1_a3
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%T Primitive prime divisors of orders of Suzuki–Ree groups
%J Algebra i logika
%D 2023
%P 59-70
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_1_a3/
%G ru
%F AL_2023_62_1_a3
M. A. Grechkoseeva. Primitive prime divisors of orders of Suzuki–Ree groups. Algebra i logika, Tome 62 (2023) no. 1, pp. 59-70. http://geodesic.mathdoc.fr/item/AL_2023_62_1_a3/