On splitting of normalizers of maximal tori in finite groups of Lie type
Algebra i logika, Tome 62 (2023) no. 1, pp. 33-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group of Lie type, and $T$ some maximal torus of the group $G$. We bring to a close the study of the question of whether there exists a supplement for a torus $T$ in its algebraic normalizer $N(G,T)$. It is proved that any maximal torus of a group $G\in \{G_2(q),{}^2G_2(q),{}^3D_4(q)\}$ has a supplement in its algebraic normalizer. Also we consider the remaining twisted classical groups ${}^2A_n(q)$ and ${}^2D_n(q)$.
Keywords: finite group of Lie type, twisted group of Lie type, Weyl group, algebraic normalizer.
Mots-clés : maximal torus
@article{AL_2023_62_1_a2,
     author = {A. A. Galt and A. M. Staroletov},
     title = {On splitting of normalizers of maximal tori in finite groups of {Lie} type},
     journal = {Algebra i logika},
     pages = {33--58},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_1_a2/}
}
TY  - JOUR
AU  - A. A. Galt
AU  - A. M. Staroletov
TI  - On splitting of normalizers of maximal tori in finite groups of Lie type
JO  - Algebra i logika
PY  - 2023
SP  - 33
EP  - 58
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_1_a2/
LA  - ru
ID  - AL_2023_62_1_a2
ER  - 
%0 Journal Article
%A A. A. Galt
%A A. M. Staroletov
%T On splitting of normalizers of maximal tori in finite groups of Lie type
%J Algebra i logika
%D 2023
%P 33-58
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_1_a2/
%G ru
%F AL_2023_62_1_a2
A. A. Galt; A. M. Staroletov. On splitting of normalizers of maximal tori in finite groups of Lie type. Algebra i logika, Tome 62 (2023) no. 1, pp. 33-58. http://geodesic.mathdoc.fr/item/AL_2023_62_1_a2/

[1] J. Tits, “Normalisateurs de tores. I: Groupes de Coxeter Étendus”, J. Algebra, 4 (1966), 96–116 | DOI | MR | Zbl

[2] G. Malle, D. Testerman, Linear algebraic groups and finite groups of Lie type, Camb. Stud. Adv. Math., 133, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl

[3] J. Adams, X. He, “Lifting of elements of Weyl groups”, J. Algebra, 485 (2017), 142–165 | DOI | MR | Zbl

[4] A. A. Galt, “O rasscheplyaemosti normalizatora maksimalnogo tora v isklyuchitelnykh lineinykh algebraicheskikh gruppakh”, Izv. RAN. Ser. matem., 81:2 (2017), 35–52 | DOI | MR | Zbl

[5] A. A. Galt, “On splitting of the normalizer of a maximal torus in orthogonal groups”, J. Algebra Appl., 16:9 (2017), 1750174, 23 pp. | DOI | MR | Zbl

[6] A. A. Galt, “On splitting of the normalizer of a maximal torus in linear groups”, J. Algebra Appl., 14:7 (2015), 1550114, 20 pp. | DOI | MR | Zbl

[7] A. A. Galt, “O rasscheplyaemosti normalizatora maksimalnogo tora v simplekticheskikh gruppakh”, Izv. RAN. Ser. matem., 78:3 (2014), 19–34 | DOI | MR | Zbl

[8] M. Curtis, A. Wiederhold, B. Williams, “Normalizers of maximal tori”, Localiz. Group Theory Homotopy Theory rel. Topics, Symp. Battelle Seattle Res. Center, Lect. Notes Math., 418, Springer-Verlag, Berlin-Heidelberg-New York, 1974, 31–47 | DOI | MR

[9] A. Galt, A. Staroletov, “On splitting of the normalizer of a maximal torus in $E_6(q)$”, Algebra Colloq., 26:2 (2019), 329–350 | DOI | MR | Zbl

[10] A. A. Galt, A. M. Staroletov, “O rasscheplyaemosti normalizatorov maksimalnykh torov v gruppakh $E_7(q)$ i $E_8(q)$”, Matem. tr., 24:1 (2021), 52–101 | MR | Zbl

[11] A. A. Galt, A. M. Staroletov, “Minimalnye dobavleniya k maksimalnym toram v ikh normalizatorakh dlya grupp $F_4(q)$”, Izv. RAN. Ser. matem., 86:1 (2022), 134–159 | DOI | MR

[12] A. A. Buturlakin, M. A. Grechkoseeva, “Tsiklicheskoe stroenie maksimalnykh torov v konechnykh klassicheskikh gruppakh”, Algebra i logika, 46:2 (2007), 129–156 | MR | Zbl

[13] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, John Wiley Sons, a Wiley Intersci. Publ., London etc., 1972 | MR

[14] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Chapter A: Almost simple $K$-groups, v. I, Math. Surv. Monogr., 40. 3, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl

[15] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure Appl. Math., A Wiley-Intersci. Publ., John Wiley Sons, Chichester-New York etc., 1985 | MR | Zbl

[16] N. Burbaki, Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972 | MR

[17] W. M. Kantor, A. Seress, “Prime power graphs for groups of Lie type”, J. Algebra, 247:2 (2002), 370–434 | DOI | MR | Zbl

[18] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system. I: The user language”, J. Symb. Comput., 24:3/4 (1997), 235–265 | DOI | MR | Zbl

[19] http://magma.maths.usyd.edu.au/calc

[20] GAP — Groups, Algorithms, Programming — A System for Computational Discrete Algebra, vers. 4.12.2, , The GAP Group, 2022 https://www.gap-system.org

[21] https://github.com/AlexeyStaroletov/GroupsOfLieType

[22] D. I. Deriziotis, G. O. Michler, “Character table and blocks of finite simple triality groups ${}^3D_4(q)$”, Trans. Am. Math. Soc., 303:1 (1987), 39–70 | MR | Zbl