Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2023_62_1_a1, author = {Zh. Wang and W. Guo and D. O. Revin}, title = {Toward a sharp {Baer--Suzuki} theorem for the $\pi$-radical: exceptional groups of small rank}, journal = {Algebra i logika}, pages = {3--32}, publisher = {mathdoc}, volume = {62}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2023_62_1_a1/} }
TY - JOUR AU - Zh. Wang AU - W. Guo AU - D. O. Revin TI - Toward a sharp Baer--Suzuki theorem for the $\pi$-radical: exceptional groups of small rank JO - Algebra i logika PY - 2023 SP - 3 EP - 32 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2023_62_1_a1/ LA - ru ID - AL_2023_62_1_a1 ER -
Zh. Wang; W. Guo; D. O. Revin. Toward a sharp Baer--Suzuki theorem for the $\pi$-radical: exceptional groups of small rank. Algebra i logika, Tome 62 (2023) no. 1, pp. 3-32. http://geodesic.mathdoc.fr/item/AL_2023_62_1_a1/
[1] N. Yang, D. O. Revin, E. P. Vdovin, “Baer–Suzuki theorem for the $\pi$-radical”, Isr. J. Math., 254:1 (2021), 173–207 | DOI | MR
[2] N. Gordeev, F. Grunewald, B. Kunyavskii, E. Plotkin, “A description of Baer–Suzuki type of the solvable radical of a finite group”, J. Pure Appl. Algebra, 213:2 (2009), 250–258 | DOI | MR | Zbl
[3] R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133:3 (1957), 256–270 | DOI | MR | Zbl
[4] M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. Math. (2), 82 (1965), 191–212 | DOI | MR | Zbl
[5] J. Alperin, R. Lyons, “On conjugacy classes of $p$-elements”, J. Algebra, 19:2 (1971), 536–537 | DOI | MR | Zbl
[6] N. Yan, Ch. U, D. O. Revin, “O tochnoi teoreme Bera–Suzuki dlya $\pi$-radikala: sporadicheskie gruppy”, Sib. matem. zh., 63:2 (2022), 464–472
[7] N. Yan, Chzh. U, D. O. Revin, E. P. Vdovin, “O tochnoi teoreme Bera–Suzuki dlya $\pi$-radikala konechnoi gruppy”, Matem. sb., 214:1 (2023), 113–154 | DOI | MR
[8] V. N. Tyutyanov, “Kriterii neprostoty dlya konechnoi gruppy”, Izv. Gomelskogo gos. un-ta im. F. Skoriny (Voprosy algebry), 16:3 (2000), 125–137 | Zbl
[9] D. O. Revin, “O $\pi$-teoremakh Bera–Sudzuki”, Sib. matem. zh., 52:2 (2011), 430–440 | MR | Zbl
[10] R. M. Guralnick, J. Saxl, “Generation of finite almost simple groups by conjugates”, J. Algebra, 268:2 (2003), 519–571 | DOI | MR | Zbl
[11] D. Gorenstein, Finite groups, 2nd ed., Chelsea Publ. Co, New York, 1980 | MR | Zbl
[12] I. M. Isaacs, Character theory of finite groups, Pure Appl. Math., 69, Academic Press, New York-San Francisco-London, 1976 | MR | Zbl
[13] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure Appl. Math., John Wiley and Sons, a Wiley-Intersci. Publ, Chichester-New York etc., 1985 | MR | Zbl
[14] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, Lond. Math. Soc. Lect. Note Ser., 407, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl
[15] P. B. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, Lond. Math. Soc. Lect. Note Ser, 129, Cambridge Univ. Press, Cambridge etc., 1990 | MR | Zbl
[16] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[17] S. Guest, “A solvable version of the Baer–Suzuki theorem”, Trans. Am. Math. Soc., 362:11 (2010), 5909–5946 | DOI | MR | Zbl
[18] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, John Wiley Sons, a Wiley Intersci. Publ., London etc., 1972 | MR
[19] D. Gorenstein, R. Lyons, R. Solomon, “Almost simple $K$-groups”, The classification of the finite simple groups, Chapter A, v. I, Math. Surv. Monogr, 40.3, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl
[20] A. S. Kondratev, “Podgruppy konechnykh grupp Shevalle”, UMN, 41:1(247) (1986), 57–96 | MR | Zbl
[21] M. Aschbacher, G. M. Seitz, “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | DOI | MR | Zbl
[22] E. P. Vdovin, A. A. Galt, “Strogaya veschestvennost konechnykh prostykh grupp”, Sib. matem. zh., 51:4 (2010), 769–777 | MR | Zbl
[23] A. A. Galt, “Strogo veschestvennye elementy v konechnykh prostykh ortogonalnykh gruppakh”, Sib. matem. zh., 51:2 (2010), 241–248 | MR | Zbl
[24] B. N. Cooperstein, “Maximal subgroups of $G_2(2^n)$”, J. Algebra, 70 (1981), 23–36 | DOI | MR | Zbl
[25] P. B. Kleidman, “The maximal subgroups of the Steinberg triality groups ${}^3 D_{4}(q)$ and their automorphism groups”, J. Algebra, 115:1 (1988), 182–199 | DOI | MR | Zbl
[26] P. B. Kleidman, “The maximal subgroups of the Chevalley groups $G_2(q)$ with $q$ odd, the Ree groups ${}^2 G_{2}(q)$, and their automorphism groups”, J. Algebra, 117:1 (1988), 30–71 | DOI | MR | Zbl
[27] N. Burbaki, Gruppy i algebry Li. Gl. IV–VI. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei (Elementy matematiki), Mir, M., 1972
[28] D. Bubboloni, M. S. Lucido, Th. Weigel, “Generic 2-coverings of finite groups of Lie type”, Rend. Semin. Mat. Univ. Padova, 115 (2006), 209–252 | MR | Zbl
[29] M. A. Pellegrini, “2-coverings for exceptional and sporadic simple groups”, Arch. Math., 101:3 (2013), 201–206 | DOI | MR | Zbl
[30] S. Guest, D. Levy, “Criteria for solvable radical membership via $p$-elements”, J. Algebra, 415 (2014), 88–111 | DOI | MR | Zbl
[31] F. Lübeck, Elements of order $2$ and $3$ in Exceptional Groups of Lie Type, http://www.math.rwth-aachen.de/F̃rank.Luebeck/chev/23elts.html
[32] B. Huppert, Endliche Gruppen, v. I, Grundlehren Math. Wiss., 134, Nachdr. d. 1. Aufl., Springer-Verlag, Berlin a.o., 1979 | MR | Zbl
[33] G. Malle, “Small rank exceptional Hurwitz groups”, Groups of Lie type and their geometries, Proc. conf. (Como, Italy, June 14-19, 1993), Lond. Math. Soc. Lect. Note Ser., 207, eds. W. M. Kantor et al., Cambridge Univ. Press, Cambridge, 1995, 173–183 | MR | Zbl
[34] N. Spaltenstein, “Caractères unipotents de $^{3}D_{4}(F_{q})$”, Comment. Math. Helv., 57:4 (1982), 676–691 | DOI | MR | Zbl
[35] B. H. Matzat, Konstruktive Galoistheorie, Lect. Notes Math., 1284, Sprinqer-Verlag, Berlin etc., 1987 | DOI | MR | Zbl
[36] A. V. Zavarnitsin, “Konechnye gruppy s pyatikomponentnym grafom prostykh chisel”, Sib. matem. zhurn., 54:1 (2013), 57–64 | MR | Zbl
[37] D. I. Deriziotis, G. O. Michler, “Character table and blocks of finite simple triality groups ${}^{3}D_4(q)$”, Trans. Am. Math. Soc., 303:1 (1987), 39–70 | MR | Zbl
[38] D. O. Revin, A. V. Zavarnitsine, “On generations by conjugate elements in almost simple groups with socle ${}^2F_4(q^2)'$”, Journal of Group Theory | DOI