Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2022_61_6_a7, author = {A. A. Stepanova}, title = {Generalized stability of the class of injective $S$-acts}, journal = {Algebra i logika}, pages = {784--795}, publisher = {mathdoc}, volume = {61}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2022_61_6_a7/} }
A. A. Stepanova. Generalized stability of the class of injective $S$-acts. Algebra i logika, Tome 61 (2022) no. 6, pp. 784-795. http://geodesic.mathdoc.fr/item/AL_2022_61_6_a7/
[1] E. A. Palyutin, “$E^{*}$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl
[2] E. A. Palyutin, “$P$-stabilnye abelevy gruppy”, Algebra i logika, 52:5 (2013), 606–631 | MR | Zbl
[3] M. A. Rusaleev, “Kharakterizatsiya $(p,1)$-stabilnykh teorii”, Algebra i logika, 46:3 (2007), 346–359 | MR | Zbl
[4] D. O. Ptakhov, “Poligony s $(P,1)$-stabilnoi teoriei”, Algebra i logika, 56:6 (2017), 712–720 | MR
[5] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories. With applications to wreath products and graphs, A handbook for students and researchers, de Gruyter Expo. Math., 29, Walter de Gruyter, Berlin, 2000 | MR | Zbl
[6] A. A. Stepanova, D. O. Ptakhov, “$P$-stabilnye poligony”, Algebra i logika, 56:4 (2017), 486–505 | MR | Zbl
[7] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977