Generalized stability of the class of injective $S$-acts
Algebra i logika, Tome 61 (2022) no. 6, pp. 784-795.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of $P$-stability is a particular case of generalized stability of complete theories. We study injective $S$-acts with a $P$-stable theory. It is proved that the class of injective $S$-acts is $(P,1)$-stable only if $S$ is a one-element monoid. Also we describe commutative and linearly ordered monoids $S$ the class of injective $S$-acts over which is $(P,s)$-, $(P,a)$-, and $(P,e)$-stable.
Keywords: monoid, act over monoid, injective act, generalized stability.
@article{AL_2022_61_6_a7,
     author = {A. A. Stepanova},
     title = {Generalized stability of the class of injective $S$-acts},
     journal = {Algebra i logika},
     pages = {784--795},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_6_a7/}
}
TY  - JOUR
AU  - A. A. Stepanova
TI  - Generalized stability of the class of injective $S$-acts
JO  - Algebra i logika
PY  - 2022
SP  - 784
EP  - 795
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_6_a7/
LA  - ru
ID  - AL_2022_61_6_a7
ER  - 
%0 Journal Article
%A A. A. Stepanova
%T Generalized stability of the class of injective $S$-acts
%J Algebra i logika
%D 2022
%P 784-795
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_6_a7/
%G ru
%F AL_2022_61_6_a7
A. A. Stepanova. Generalized stability of the class of injective $S$-acts. Algebra i logika, Tome 61 (2022) no. 6, pp. 784-795. http://geodesic.mathdoc.fr/item/AL_2022_61_6_a7/

[1] E. A. Palyutin, “$E^{*}$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl

[2] E. A. Palyutin, “$P$-stabilnye abelevy gruppy”, Algebra i logika, 52:5 (2013), 606–631 | MR | Zbl

[3] M. A. Rusaleev, “Kharakterizatsiya $(p,1)$-stabilnykh teorii”, Algebra i logika, 46:3 (2007), 346–359 | MR | Zbl

[4] D. O. Ptakhov, “Poligony s $(P,1)$-stabilnoi teoriei”, Algebra i logika, 56:6 (2017), 712–720 | MR

[5] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories. With applications to wreath products and graphs, A handbook for students and researchers, de Gruyter Expo. Math., 29, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[6] A. A. Stepanova, D. O. Ptakhov, “$P$-stabilnye poligony”, Algebra i logika, 56:4 (2017), 486–505 | MR | Zbl

[7] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977