Generalized stability of the class of injective $S$-acts
Algebra i logika, Tome 61 (2022) no. 6, pp. 784-795

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of $P$-stability is a particular case of generalized stability of complete theories. We study injective $S$-acts with a $P$-stable theory. It is proved that the class of injective $S$-acts is $(P,1)$-stable only if $S$ is a one-element monoid. Also we describe commutative and linearly ordered monoids $S$ the class of injective $S$-acts over which is $(P,s)$-, $(P,a)$-, and $(P,e)$-stable.
Keywords: monoid, act over monoid, injective act, generalized stability.
@article{AL_2022_61_6_a7,
     author = {A. A. Stepanova},
     title = {Generalized stability of the class of injective $S$-acts},
     journal = {Algebra i logika},
     pages = {784--795},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_6_a7/}
}
TY  - JOUR
AU  - A. A. Stepanova
TI  - Generalized stability of the class of injective $S$-acts
JO  - Algebra i logika
PY  - 2022
SP  - 784
EP  - 795
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_6_a7/
LA  - ru
ID  - AL_2022_61_6_a7
ER  - 
%0 Journal Article
%A A. A. Stepanova
%T Generalized stability of the class of injective $S$-acts
%J Algebra i logika
%D 2022
%P 784-795
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_6_a7/
%G ru
%F AL_2022_61_6_a7
A. A. Stepanova. Generalized stability of the class of injective $S$-acts. Algebra i logika, Tome 61 (2022) no. 6, pp. 784-795. http://geodesic.mathdoc.fr/item/AL_2022_61_6_a7/