Structure of singular superalgebras with $2$-dimensional even part and new examples of singular superalgebras
Algebra i logika, Tome 61 (2022) no. 6, pp. 742-765.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a singular superalgebra with a $2$-dimensional even part is isomorphic to a superalgebra $B_{2\mid3}(\varphi,\xi,\psi)$. In particular, there do not exist infinite-dimensional simple singular superalgebra with a $2$-dimensional even part. It is proved that if a singular superalgebra contains an odd left annihilator, then it contains a nondegenerate switch. Lastly, it is established that for any number $N\geq 5$, except the numbers $6,7,8,11$, there exist singular superalgebras with a switch of dimension $N$. For the numbers $N=6,7,8,11$, there do not exist singular $N$-dimensional superalgebras with a switch.
Keywords: singular superalgebra with switch, extended double, singular superalgebra with $2$-dimensional even part.
@article{AL_2022_61_6_a5,
     author = {S. V. Pchelintsev and O. V. Shashkov},
     title = {Structure of singular superalgebras with $2$-dimensional even part and new examples of singular superalgebras},
     journal = {Algebra i logika},
     pages = {742--765},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_6_a5/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
AU  - O. V. Shashkov
TI  - Structure of singular superalgebras with $2$-dimensional even part and new examples of singular superalgebras
JO  - Algebra i logika
PY  - 2022
SP  - 742
EP  - 765
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_6_a5/
LA  - ru
ID  - AL_2022_61_6_a5
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%A O. V. Shashkov
%T Structure of singular superalgebras with $2$-dimensional even part and new examples of singular superalgebras
%J Algebra i logika
%D 2022
%P 742-765
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_6_a5/
%G ru
%F AL_2022_61_6_a5
S. V. Pchelintsev; O. V. Shashkov. Structure of singular superalgebras with $2$-dimensional even part and new examples of singular superalgebras. Algebra i logika, Tome 61 (2022) no. 6, pp. 742-765. http://geodesic.mathdoc.fr/item/AL_2022_61_6_a5/

[1] E. I. Zelmanov, I. P. Shestakov, “Pervichnye alternativnye superalgebry i nilpotentnost radikala svobodnoi alternativnoi algebry”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 676–693 | Zbl

[2] J. P. da Silva, L. S. I. Murakami, I. Shestakov, “On right alternative superalgebras”, Commun. Algebra, 44:1 (2016), 240–252 | DOI | MR | Zbl

[3] S. V. Pchelintsev, O. V. Shashkov, “Prostye 5-mernye pravoalternativnye superalgebry s trivialnoi chetnoi chastyu”, Sib. matem. zh., 58:6 (2017), 1387–1400 | MR | Zbl

[4] S. V. Pchelintsev, O. V. Shashkov, “Singulyarnye 6-mernye superalgebry”, Sib. elektron. matem. izv., 15 (2018), 92–105 http://semr.math.nsc.ru/v15/p92-105.pdf | Zbl

[5] S. V. Pchelintsev, O. V. Shashkov, “Linearly generated singular superalgebras”, J. Algebra, 546 (2020), 580–603 | DOI | MR | Zbl

[6] S. V. Pchelintsev, O. V. Shashkov, “Algebraicheski porozhdennye superalgebry”, Izv. vuzov. Matem., 2021, no. 6, 67–83 | Zbl

[7] E. Kleinfeld, “Right alternative rings”, Proc. Am. Math. Soc., 4 (1953), 939–944 | DOI | MR | Zbl

[8] A. I. Maltsev, Osnovy lineinoi algebry, Lan, Sankt-Peterburg, 2009 | MR

[9] N. Dzhekobson, Algebry Li, Mir, M., 1964 \pagebreak

[10] S. Leng, Algebra, Mir, M., 1968