Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$
Algebra i logika, Tome 61 (2022) no. 6, pp. 720-741

Voir la notice de l'article provenant de la source Math-Net.Ru

The joint logic of problems and propositions ${\mathrm{QHC}}$ introduced by S. A. Melikhov, as well as intuitionistic modal logic ${\mathrm{QH4}}$, is studied. An immersion of these logics into classical first-order predicate logic is considered. An analog of the Löwenheim–Skolem theorem on the existence of countable elementary submodels for ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$ is established.
Keywords: nonclassical logics, Kripke semantics, translation.
@article{AL_2022_61_6_a4,
     author = {A. A. Onoprienko},
     title = {Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$},
     journal = {Algebra i logika},
     pages = {720--741},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_6_a4/}
}
TY  - JOUR
AU  - A. A. Onoprienko
TI  - Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$
JO  - Algebra i logika
PY  - 2022
SP  - 720
EP  - 741
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_6_a4/
LA  - ru
ID  - AL_2022_61_6_a4
ER  - 
%0 Journal Article
%A A. A. Onoprienko
%T Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$
%J Algebra i logika
%D 2022
%P 720-741
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_6_a4/
%G ru
%F AL_2022_61_6_a4
A. A. Onoprienko. Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$. Algebra i logika, Tome 61 (2022) no. 6, pp. 720-741. http://geodesic.mathdoc.fr/item/AL_2022_61_6_a4/