Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2022_61_6_a2, author = {A. S. Zakharov}, title = {A class of generalized derivations}, journal = {Algebra i logika}, pages = {687--705}, publisher = {mathdoc}, volume = {61}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2022_61_6_a2/} }
A. S. Zakharov. A class of generalized derivations. Algebra i logika, Tome 61 (2022) no. 6, pp. 687-705. http://geodesic.mathdoc.fr/item/AL_2022_61_6_a2/
[1] R. D. Schafer, An introduction to nonassociative algebras, Pure Appl. Math., 22, Academic Press, New York–London, 1966 | MR | Zbl
[2] S. Jimenez-Gestal, J. M. Perez-Izquierdo, “Ternary derivations of generalized Cayley–Dickson algebras”, Commun. Algebra, 31:10 (2003), 5071–5094 | DOI | MR | Zbl
[3] V. T. Filippov, “O $\delta$-differentsirovaniyakh algebr Li”, Sib. matem. zh., 39:6 (1998), 1409–1422 | MR | Zbl
[4] M. Brešar, “On the distance of the composition of two derivations to the generalized derivations”, Glasg. Math. J., 33:1 (1991), 89–93 | DOI | MR | Zbl
[5] G. F. Leger, E. M. Luks, “Generalized derivations of Lie algebras”, J. Algebra, 228:1 (2000), 165–203 | DOI | MR | Zbl
[6] I. M. Gelfand, I. Ya. Dorfman, “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz i ego pril., 13:4 (1979), 13–30 | MR | Zbl
[7] A. A. Balinskii, S. P. Novikov, “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, Dokl. AN SSSR, 283:5 (1985), 1036–1039 | MR | Zbl
[8] E. I. Zelmanov, “Ob odnom klasse lokalnykh translyatsionno invariantnykh algebr Li”, Dokl. AN SSSR, 292:6 (1987), 1294–1297 | MR | Zbl
[9] V. T. Filippov, “Ob odnom klasse prostykh neassotsiativnykh algebr”, Matem. zametki, 45:1 (1989), 101–105 | MR
[10] J. M. Osborn, “Modules for Novikov algebras”, Second int. conf. algebra ded. mem. A. I. Shirshov, Proc. conf. algebra (August 20-25, 1991, Barnaul, Russia), Contemp. Math., 184, eds. L. A. Bokut' et al.,, Am. Math. Soc., Providence, RI, 1995, 327–338 | DOI | MR | Zbl
[11] J. M. Osborn, “Novikov algebras”, Nova J. Algebra Geom., 1:1 (1992), 1–13 | MR | Zbl
[12] J. M. Osborn, “Simple Novikov algebras with an idempotent”, Commun. Algebra, 20:9 (1992), 2729–2753 | DOI | MR | Zbl
[13] X. Xu, “On simple Novikov algebras and their irreducible modules”, J. Algebra, 185:3 (1996), 905–934 | DOI | MR | Zbl
[14] X. Xu, “Novikov–Poisson algebras”, J. Algebra, 190:2 (1997), 253–279 | DOI | MR | Zbl
[15] A. Dzhumadil'daev, C. L\"{o }fwall, “Trees, free right-symmetric algebras, free Novikov algebras and identities”, Homology Homotopy Appl, 4:2(1) (2002), 165–190 | DOI | MR | Zbl
[16] Z. Zhang, Y. Chen, L. A. Bokut, “Free Gelfand–Dorfman–Novikov superalgebras and a Poincaré-Birkhoff-Witt type theorem”, Int. J. Algebra Comput., 29:3 (2019), 481–505 | DOI | MR | Zbl
[17] A. S. Zakharov, “Superalgebry Gelfanda–Dorfmana–Novikova–Puassona i ikh obertyvayuschie”, Sib. elektron. matem. izv., 16 (2019), 1843–1855 http://semr.math.nsc.ru/v16/p1843-1855.pdf | MR | Zbl
[18] V. N. Zhelyabin, A. S. Tikhov, “Algebry Novikova–Puassona i assotsiativnye kommutativnye differentsialnye algebry”, Algebra i logika, 47:2 (2008), 186–202 | MR | Zbl
[19] A. S. Zakharov, “Novikov–Poisson algebras and superalgebras of Jordan brackets”, Comm.. Alg., 42:5 (2014), 2285–2298 | DOI | MR | Zbl
[20] A. S. Zakharov, “Vlozhenie algebr Novikova–Puassona v algebry Novikova–Puassona vektornogo tipa”, Algebra i logika, 52:3 (2013), 352–369 | MR | Zbl
[21] A. S. Zakharov, “Algebry Novikova–Puassona malykh razmernostei”, Sib. elektron. matem. izv., 12 (2015), 381–393 http://semr.math.nsc.ru/v12/p381-393.pdf | Zbl
[22] E. C. Posner, “Differentiable simple rings”, Proc. Am. Math. Soc., 11:3 (1960), 337–343 | DOI | MR | Zbl
[23] I. L. Kantor, “Iordanovy i lievy superalgebry, opredelennye algebroi Puassona”, Vtoraya sib. shkola "‘Algebra i analiz"’, Izd-vo Tomsk. un-ta, Tomsk, 1989, 55–80
[24] D. King, K. McCrimmon, “The Kantor construction of Jordan superalgebras”, Commun. Algebra, 20:1 (1992), 109–126 | DOI | MR | Zbl
[25] I. B. Kaigorodov, “Ob obobschennom duble Kantora”, Vestn. SamGU. Estestvennonauchn. ser., 2010, no. 4(78), 42–50