A class of generalized derivations
Algebra i logika, Tome 61 (2022) no. 6, pp. 687-705.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of generalized derivations that arise in connection with the problem of adjoining unity to an algebra with generalized derivation, and of searching envelopes for Novikov–Poisson algebras. Conditions for the existence of the localization of an algebra with ternary derivation are specified, as well as conditions under which given an algebra with ternary derivation, we can construct a Novikov–Poisson algebra and a Jordan superalgebra. Finally, we show how the simplicity of an algebra with Brešar generalized derivation is connected with simplicity of the appropriate Novikov algebra.
Keywords: differential algebra, ternary derivation, generalized derivation, Jordan superalgebra.
Mots-clés : Novikov–Poisson algebra
@article{AL_2022_61_6_a2,
     author = {A. S. Zakharov},
     title = {A class of generalized derivations},
     journal = {Algebra i logika},
     pages = {687--705},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_6_a2/}
}
TY  - JOUR
AU  - A. S. Zakharov
TI  - A class of generalized derivations
JO  - Algebra i logika
PY  - 2022
SP  - 687
EP  - 705
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_6_a2/
LA  - ru
ID  - AL_2022_61_6_a2
ER  - 
%0 Journal Article
%A A. S. Zakharov
%T A class of generalized derivations
%J Algebra i logika
%D 2022
%P 687-705
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_6_a2/
%G ru
%F AL_2022_61_6_a2
A. S. Zakharov. A class of generalized derivations. Algebra i logika, Tome 61 (2022) no. 6, pp. 687-705. http://geodesic.mathdoc.fr/item/AL_2022_61_6_a2/

[1] R. D. Schafer, An introduction to nonassociative algebras, Pure Appl. Math., 22, Academic Press, New York–London, 1966 | MR | Zbl

[2] S. Jimenez-Gestal, J. M. Perez-Izquierdo, “Ternary derivations of generalized Cayley–Dickson algebras”, Commun. Algebra, 31:10 (2003), 5071–5094 | DOI | MR | Zbl

[3] V. T. Filippov, “O $\delta$-differentsirovaniyakh algebr Li”, Sib. matem. zh., 39:6 (1998), 1409–1422 | MR | Zbl

[4] M. Brešar, “On the distance of the composition of two derivations to the generalized derivations”, Glasg. Math. J., 33:1 (1991), 89–93 | DOI | MR | Zbl

[5] G. F. Leger, E. M. Luks, “Generalized derivations of Lie algebras”, J. Algebra, 228:1 (2000), 165–203 | DOI | MR | Zbl

[6] I. M. Gelfand, I. Ya. Dorfman, “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz i ego pril., 13:4 (1979), 13–30 | MR | Zbl

[7] A. A. Balinskii, S. P. Novikov, “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, Dokl. AN SSSR, 283:5 (1985), 1036–1039 | MR | Zbl

[8] E. I. Zelmanov, “Ob odnom klasse lokalnykh translyatsionno invariantnykh algebr Li”, Dokl. AN SSSR, 292:6 (1987), 1294–1297 | MR | Zbl

[9] V. T. Filippov, “Ob odnom klasse prostykh neassotsiativnykh algebr”, Matem. zametki, 45:1 (1989), 101–105 | MR

[10] J. M. Osborn, “Modules for Novikov algebras”, Second int. conf. algebra ded. mem. A. I. Shirshov, Proc. conf. algebra (August 20-25, 1991, Barnaul, Russia), Contemp. Math., 184, eds. L. A. Bokut' et al.,, Am. Math. Soc., Providence, RI, 1995, 327–338 | DOI | MR | Zbl

[11] J. M. Osborn, “Novikov algebras”, Nova J. Algebra Geom., 1:1 (1992), 1–13 | MR | Zbl

[12] J. M. Osborn, “Simple Novikov algebras with an idempotent”, Commun. Algebra, 20:9 (1992), 2729–2753 | DOI | MR | Zbl

[13] X. Xu, “On simple Novikov algebras and their irreducible modules”, J. Algebra, 185:3 (1996), 905–934 | DOI | MR | Zbl

[14] X. Xu, “Novikov–Poisson algebras”, J. Algebra, 190:2 (1997), 253–279 | DOI | MR | Zbl

[15] A. Dzhumadil'daev, C. L\"{o }fwall, “Trees, free right-symmetric algebras, free Novikov algebras and identities”, Homology Homotopy Appl, 4:2(1) (2002), 165–190 | DOI | MR | Zbl

[16] Z. Zhang, Y. Chen, L. A. Bokut, “Free Gelfand–Dorfman–Novikov superalgebras and a Poincaré-Birkhoff-Witt type theorem”, Int. J. Algebra Comput., 29:3 (2019), 481–505 | DOI | MR | Zbl

[17] A. S. Zakharov, “Superalgebry Gelfanda–Dorfmana–Novikova–Puassona i ikh obertyvayuschie”, Sib. elektron. matem. izv., 16 (2019), 1843–1855 http://semr.math.nsc.ru/v16/p1843-1855.pdf | MR | Zbl

[18] V. N. Zhelyabin, A. S. Tikhov, “Algebry Novikova–Puassona i assotsiativnye kommutativnye differentsialnye algebry”, Algebra i logika, 47:2 (2008), 186–202 | MR | Zbl

[19] A. S. Zakharov, “Novikov–Poisson algebras and superalgebras of Jordan brackets”, Comm.. Alg., 42:5 (2014), 2285–2298 | DOI | MR | Zbl

[20] A. S. Zakharov, “Vlozhenie algebr Novikova–Puassona v algebry Novikova–Puassona vektornogo tipa”, Algebra i logika, 52:3 (2013), 352–369 | MR | Zbl

[21] A. S. Zakharov, “Algebry Novikova–Puassona malykh razmernostei”, Sib. elektron. matem. izv., 12 (2015), 381–393 http://semr.math.nsc.ru/v12/p381-393.pdf | Zbl

[22] E. C. Posner, “Differentiable simple rings”, Proc. Am. Math. Soc., 11:3 (1960), 337–343 | DOI | MR | Zbl

[23] I. L. Kantor, “Iordanovy i lievy superalgebry, opredelennye algebroi Puassona”, Vtoraya sib. shkola "‘Algebra i analiz"’, Izd-vo Tomsk. un-ta, Tomsk, 1989, 55–80

[24] D. King, K. McCrimmon, “The Kantor construction of Jordan superalgebras”, Commun. Algebra, 20:1 (1992), 109–126 | DOI | MR | Zbl

[25] I. B. Kaigorodov, “Ob obobschennom duble Kantora”, Vestn. SamGU. Estestvennonauchn. ser., 2010, no. 4(78), 42–50