Normal companions of intuitionistic modal logics
Algebra i logika, Tome 61 (2022) no. 6, pp. 659-686.

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously, Došen and Božić introduced four independent intuitionistic modal logics, one for each of four types of modal operators—necessity ${\mathsf{N}}$, possibility ${\mathsf{P}}$, impossibility ${\mathsf{Im}}$, and unnecessity ${\mathsf{Un}}$. These logics are denoted $\mathsf{HK}{\mathsf{M}}$, where ${\mathsf{M}}\in\{{\mathsf{N}},{\mathsf{P}},{\mathsf{Un}},{\mathsf{Im}}\}$. Interest in treating the four types of modal operators separately is associated with just the fact that these cannot be reduced to each other over intuitionistic logic. Here we study extensions of logics $\mathsf{HK}{\mathsf{M}}$ that have normal companions. It turns out that all extensions of the logics $\mathsf{HK}{\mathsf{N}}$ and $\mathsf{HK}{\mathsf{Un}}$ possess normal companions. For the extensions of $\mathsf{HK}{\mathsf{P}}$ and $\mathsf{HK}{\mathsf{Im}}$, we obtain a criterion for the existence of normal companions, which is postulated as the presence of some modal law of double negation. Also we show how adding of this law influences expressive capacities of a logic. Of particular interest is the result saying that extensions of $\mathsf{HK}{\mathsf{P}}$ and $\mathsf{HK}{\mathsf{Im}}$ have normal companions only if they are definitionally equivalent to those of $\mathsf{HK}{\mathsf{N}}$ and $\mathsf{HK}{\mathsf{Un}}$ respectively. This result is one more example of the differences in behavior of the four types of modal operators over intuitionistic logic.
Keywords: intuitionistic modal logic, normal companion, modal law of double negation.
@article{AL_2022_61_6_a1,
     author = {S. A. Drobyshevich},
     title = {Normal companions of intuitionistic modal logics},
     journal = {Algebra i logika},
     pages = {659--686},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_6_a1/}
}
TY  - JOUR
AU  - S. A. Drobyshevich
TI  - Normal companions of intuitionistic modal logics
JO  - Algebra i logika
PY  - 2022
SP  - 659
EP  - 686
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_6_a1/
LA  - ru
ID  - AL_2022_61_6_a1
ER  - 
%0 Journal Article
%A S. A. Drobyshevich
%T Normal companions of intuitionistic modal logics
%J Algebra i logika
%D 2022
%P 659-686
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_6_a1/
%G ru
%F AL_2022_61_6_a1
S. A. Drobyshevich. Normal companions of intuitionistic modal logics. Algebra i logika, Tome 61 (2022) no. 6, pp. 659-686. http://geodesic.mathdoc.fr/item/AL_2022_61_6_a1/

[1] F. Wolter, M. Zakharyaschev, “Intuitionistic modal logic”, Logic and foundations of mathematics, Selected contributed papers of the 10th int. congress of logic, methodology and philosophy of science (Florence, August 19-25, 1995), Synth. Libr., 280, eds. A. Cantini et al., Kluwer Acad. Publ., Dordrecht, 1999, 227–238 | MR | Zbl

[2] V. H. Sotirov, “Modal theories with intuitionistic logic”, Proc. Conf. Math. Logic (Sofia, 1980), Bulgarian Acad. Sci., 1984, 139–171 | MR

[3] M. Božić, K. Dožen, “Models for normal intuitionistic logics”, Stud. log., 43:3 (1984), 217–245 | DOI | MR | Zbl

[4] K. Došen, “Negative modal operators in intuitionistic logic”, Publ. Inst. Math., Nouv. Sér., 35:49 (1984), 3–14 | MR

[5] K. Došen, “Models for stronger normal intuitionistic modal logics”, Stud. Log., 44:1 (1985), 39–70 | DOI | MR | Zbl

[6] S. Drobyshevich, “On classical behavior of intuitionistic modalities”, Log. Log. Philos., 24:1 (2015), 79–104 | MR | Zbl

[7] S. A. Drobyshevich, S. P. Odintsov, “Svoistvo konechnykh modelei dlya negativnykh modalnostei”, Sib. elektron. matem. izv., 10 (2013), 1–21 http://semr.math.nsc.ru/v10/p1-21.pdf | MR | Zbl

[8] F. Volter, M. Zakharyaschev, “Ob otnoshenii mezhdu intuitsionistskimi i klassicheskimi modalnymi logikami”, Algebra i logika, 36:2 (1997), 121–155 | MR

[9] F. Wolter, “Superintuitionistic companions of classical modal logics”, Stud. Log., 58:2 (1997), 229–259 | DOI | MR | Zbl

[10] F. Wolter, M. Zakharyaschev, “On the Blok–Esakia theorem”, Leo Esakia on duality in modal and intuitionistic logics, Outst. Contrib. Log., 4, ed. G. Bezhanishvili, Springer, Dordrecht, 2014, 99–118 | DOI | MR | Zbl

[11] L. L. Maksimova, V. V. Rybakov, “O reshetke normalnykh modalnykh logik”, Algebra i logika, 13:2 (1974), 188–216 | MR

[12] S. Burris, H. P. Sankappanavar, A course in universal algebra, Grad. Texts in Math., 78, Springer-Verlag, New York-Heidelberg-Berlin, 1981 | DOI | MR | Zbl

[13] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963 | MR

[14] A. Chagrov, M. Zakharyaschev, Modal logic, Oxford Logic Guides, 35, Clarendon Press, Oxford, 1997 | MR | Zbl

[15] R. Goldblatt, Mathematics of modality, CSLI Lecture Notes, 43, Stanford Univ., Center for the Study of Language and Information, Stanford, CA, 1993 | MR | Zbl

[16] E. Pacuit, Neighborhood semantics for modal logic, Short Textb. Log., Springer, Cham, 2017 | DOI | MR | Zbl