Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2022_61_5_a4, author = {V. V. Rybakov}, title = {Dynamic temporal logical operations in multi-agent logics}, journal = {Algebra i logika}, pages = {600--618}, publisher = {mathdoc}, volume = {61}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2022_61_5_a4/} }
V. V. Rybakov. Dynamic temporal logical operations in multi-agent logics. Algebra i logika, Tome 61 (2022) no. 5, pp. 600-618. http://geodesic.mathdoc.fr/item/AL_2022_61_5_a4/
[1] D. M. Gabbay, I. Hodkinson, M. Reynolds, Temporal logic, v. 1, Oxf. Logic Guides, 28, Mathematical foundations and computational aspects, Clarendon Press, Oxford, 1994 | MR | Zbl
[2] D. M. Gabbay, I. M. Hodkinson, “An axiomatization of the temporal logic with until and since over the real numbers”, J. Log. Comput., 1:2 (1990), 229–259 | DOI | MR | Zbl
[3] D. M. Gabbay, I. Hodkinson, “Temporal logic in the context of databases”, Logic and reality: essays on the legacy of Arthur Prior, Including papers from the Arthur Prior memorial conference (Univ. Canterbury, Christchurch, New Zealand, 1989), ed. B. J. Copeland, Clarendon Press, Oxford, 1996, 69–87 | MR | Zbl
[4] Z. Manna, A. Pnueli, The temporal logic of reactive and concurrent systems. Specification, Springer-Verlag, Berlin etc., 1991 | MR | Zbl
[5] E. A. Emerson, J. Y. Halpern, “Decision procedures and expressiveness in the temporal logic of branching time”, J. Comput. Syst. Sci., 30 (1985), 1–24 | DOI | MR | Zbl
[6] E. M. Clarke, E. A. Emerson, A. P. Sistla, “Automatic verification of finite-state concurrent systems using temporal logic specifications”, ACM Trans. Program. Lang. Syst., 8:2 (1986), 244–263 | DOI | Zbl
[7] V. V. Rybakov, “Non-transitive linear temporal logic and logical knowledge operations”, J. Log. Comput., 26:3 (2016), 945–958 | DOI | MR | Zbl
[8] V. V. Rybakov, “Intranzitivnye vremennye mnogoagentnye logiki, informatsiya i znanie, razreshimost”, Sib. matem. zh., 58:5 (2017), 1128–1143 | MR | Zbl
[9] V. V. Rybakov, “Multi-agent logic's modelling non-monotonic information and reasoning”, Procedia Comput. Sci., 176 (2020), 670–674 | DOI
[10] G. Weiss (ed.), Multiagent systems: A modern approach to distributed artificial intelligence, MIT Press, Cambridge, MA, 1999
[11] M. Wooldridge, An introduction to multiagent systems, J. Wiley Sons Ltd, 2002
[12] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning about knowledge, MIT Press, Cambridge, MA, 1995 | MR | Zbl
[13] J. A. Robinson, “A machine-oriented logic based on the resolution principle”, J. Assoc. Comput. Mach., 12:1 (1965), 23–41 | DOI | MR | Zbl
[14] D. E. Knuth, P. B. Bendix, “Simple word problems in universal algebras”, Computational problems in abstract algebra, Proc. Conf. (Oxford, 1967), ed. J. Leech, Pergamon Press, Oxford a. o., 1970, 263–297 | MR
[15] F. Baader, W. Snyder, “Unification theory”, Handbook of Automated Reasoning, v. I, eds. A. Robinson et al., North-Holland/Elsevier, Amsterdam, 2001, 447–533
[16] V. V. Rybakov, “Problems of substitution and admissibility in the modal system Grz and in intuitionistic propositional calculus”, Ann. Pure Appl. Logic, 50:1 (1990), 71–106 | DOI | MR | Zbl
[17] V. V. Rybakov, “Rules of inference with parameters for intuitionistic logic”, J. Symb. Log., 57:3 (1992), 912–923 | DOI | MR | Zbl
[18] S. Ghilardi, “Unification through projectivity”, J. Log. Comput., 7:6 (1997), 733–752 | DOI | MR | Zbl
[19] S. Ghilardi, “Unification in intuitionistic logic”, J. Symb. Log., 64:2 (1999), 859–880 | DOI | MR | Zbl
[20] S. Ghilardi, “Best solving modal equations”, Ann. Pure Appl. Logic, 102:3 (2000), 183–198 | DOI | MR | Zbl
[21] W. Dzik, P. Wojtylak, “Projective unification in modal logic”, Log. J. IGPL, 20:1 (2012), 121–153 | DOI | MR | Zbl
[22] A. Wrónski, “Transparent verifiers in intermediate logics”, Abstracts 54-th Conf. History Math. (Krakøw, 2008)
[23] V. Rybakov, “Projective formulas and unification in linear temporal logic ${\rm LTL}_U$”, Log. J. IGPL, 22:4 (2014), 665–672 | DOI | MR | Zbl
[24] S. Babenyshev, V. Rybakov, “Linear temporal logic LTL: basis for admissible rules”, J. Log. Comput., 21:2 (2011), 157–177 | DOI | MR | Zbl
[25] V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Ann. Pure Appl. Logic, 155:1 (2008), 32–45 | DOI | MR | Zbl