A class of low linear orders having computable presentations
Algebra i logika, Tome 61 (2022) no. 5, pp. 552-570

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any low linear order of the form $\mathcal{L}+\omega^*$, where $\mathcal{L}$ is some $\eta$-presentation, has a computable copy. This result contrasts with there being low $\eta$-presentations not having a computable copy.
Keywords: low linear order, $\eta$-presentation, computable linear order.
@article{AL_2022_61_5_a2,
     author = {M. V. Zubkov},
     title = {A class of low linear orders having computable presentations},
     journal = {Algebra i logika},
     pages = {552--570},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_5_a2/}
}
TY  - JOUR
AU  - M. V. Zubkov
TI  - A class of low linear orders having computable presentations
JO  - Algebra i logika
PY  - 2022
SP  - 552
EP  - 570
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_5_a2/
LA  - ru
ID  - AL_2022_61_5_a2
ER  - 
%0 Journal Article
%A M. V. Zubkov
%T A class of low linear orders having computable presentations
%J Algebra i logika
%D 2022
%P 552-570
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_5_a2/
%G ru
%F AL_2022_61_5_a2
M. V. Zubkov. A class of low linear orders having computable presentations. Algebra i logika, Tome 61 (2022) no. 5, pp. 552-570. http://geodesic.mathdoc.fr/item/AL_2022_61_5_a2/