On the absoluteness of $\aleph_1$-freeness
Algebra i logika, Tome 61 (2022) no. 5, pp. 523-540.

Voir la notice de l'article provenant de la source Math-Net.Ru

$\aleph_1$-free groups, Abelian groups for which every countable subgroup is free, exhibit a number of interesting algebraic and set-theoretic properties. We will give a complete proof that the property of being $\aleph_1$-free is absolute; that is, if an Abelian group $G$ is $\aleph_1$-free in some transitive model $\mathbf{M}$ of ZFC, then it is $\aleph_1$-free in any transitive model of ZFC containing $G$. The absoluteness of $\aleph_1$-freeness has the following remarkable consequence: an Abelian group $G$ is $\aleph_1$-free in some transitive model of ZFC if and only if it is (countable and) free in some model extension. This set-theoretic characterization will be a starting point for further exploring the relationship between the set-theoretic and algebraic properties of $\aleph_1$-free groups. In particular, we will demonstrate how proofs may be dramatically simplified using model extensions for $\aleph_1$-free groups.
Keywords: $\aleph_1$-free group, Pontryagin's criterion, absoluteness, transitive model.
@article{AL_2022_61_5_a0,
     author = {D. Herden and A. V. Pasi},
     title = {On the absoluteness of $\aleph_1$-freeness},
     journal = {Algebra i logika},
     pages = {523--540},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_5_a0/}
}
TY  - JOUR
AU  - D. Herden
AU  - A. V. Pasi
TI  - On the absoluteness of $\aleph_1$-freeness
JO  - Algebra i logika
PY  - 2022
SP  - 523
EP  - 540
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_5_a0/
LA  - ru
ID  - AL_2022_61_5_a0
ER  - 
%0 Journal Article
%A D. Herden
%A A. V. Pasi
%T On the absoluteness of $\aleph_1$-freeness
%J Algebra i logika
%D 2022
%P 523-540
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_5_a0/
%G ru
%F AL_2022_61_5_a0
D. Herden; A. V. Pasi. On the absoluteness of $\aleph_1$-freeness. Algebra i logika, Tome 61 (2022) no. 5, pp. 523-540. http://geodesic.mathdoc.fr/item/AL_2022_61_5_a0/

[1] R. Baer, “Abelian groups without elements of finite order”, Duke Math. J., 3 (1937), 68–122 | DOI | MR | Zbl

[2] E. Specker, “Additive Gruppen von Folgen ganzer Zahlen”, Port. Math., 9 (1950), 131–140 | MR | Zbl

[3] A. L. S. Corner, R. Göbel, “Prescribing endomorphism algebras, a unified treatment”, Proc. Lond. Math. Soc., III. Ser., 50 (1985), 447–479 | DOI | MR | Zbl

[4] M. Dugas, R. Göbel, “Every cotorsion-free algebra is an endomorphism algebra”, Math. Z., 181 (1982), 451–470 | DOI | MR | Zbl

[5] K. Stein, “Analytische Funktionen mehrerer komplexer Veranderlichen zu vorgegebenen Periodizitatsmoduln und das zweite Cousinsche Problem”, Math. Ann., 123 (1951), 201–222 | DOI | MR | Zbl

[6] P. C. Eklof, “Whitehead's problem is undecidable”, Am. Math. Monthly, 83 (1976), 775–788 | DOI | MR | Zbl

[7] S. Shelah, “Infinite Abelian groups, Whitehead problem and some constructions”, Isr. J. Math., 18 (1974), 243–256 | DOI | MR | Zbl

[8] P. C. Eklof, A. H. Mekler, Almost-free modules. Set-theoretic methods, North-Holland Math. Libr., 65, revised ed., North Holland, Amsterdam, 2002 | MR | Zbl

[9] R. Göbel, J. Trlifaj, Approximations and endomorphism algebras of modules, v. 1, 2, De Gruyter Expo. Math., 41, Walter de Gruyter Verlag, Berlin, 2012 | MR | Zbl

[10] J. D. Hamkins, “The set-theoretic multiverse”, Rev. Symb. Log., 5:3 (2012), 416–449 | DOI | MR | Zbl

[11] A. R. Pruss, Might all infinities be the same size?, Australas. J. Philos., 98:3 (2020), 604–617 | DOI

[12] J. Baumgartner, A. Hajnal, “A proof (involving Martin's axiom) of a partition relation”, Fundam. Math., 78 (1973), 193–203 | DOI | MR | Zbl

[13] S. Todorc̆ević, I. Farah, Some applications of the method of forcing, Yenisei Ser. Pure Appl. Math., Yenisei, M.; Lycee, Troitsk, 1995 | MR | Zbl

[14] D. Bossaller, D. Herden, A. V. Pasi, “Forcing a basis into $\aleph_1$-free groups”, J. Algebra, 627 (2023), 43–57 | DOI | MR

[15] K. Kunen, Set theory. An introduction to independence proofs, Stud. Logic Found. Math., 102, North-Holland Publ. Co., Amsterdam–New York–Oxford, 1980 | MR | Zbl

[16] L. Fuchs, Abelian groups, Springer Monogr. Math., Springer, Cham, 2015 | DOI | MR | Zbl