Complexity of the problem of being equivalent to Horn formulas.~II
Algebra i logika, Tome 61 (2022) no. 4, pp. 469-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the complexity of the existence problem for a Horn sentence equivalent to a given one. It is proved that for a signature consisting of one unary function symbol and any finite number of unary predicate symbols, the problem is computable. For a signature with at least two unary function symbols, it is stated that the problem mentioned is an $m$-complete $\Sigma^0_1$-set.
Keywords: Horn formula, $m$-reducibility, $\Sigma^0_1$-set.
@article{AL_2022_61_4_a5,
     author = {N. T. Kogabaev},
     title = {Complexity of the problem of being equivalent to {Horn} {formulas.~II}},
     journal = {Algebra i logika},
     pages = {469--482},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_4_a5/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - Complexity of the problem of being equivalent to Horn formulas.~II
JO  - Algebra i logika
PY  - 2022
SP  - 469
EP  - 482
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_4_a5/
LA  - ru
ID  - AL_2022_61_4_a5
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T Complexity of the problem of being equivalent to Horn formulas.~II
%J Algebra i logika
%D 2022
%P 469-482
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_4_a5/
%G ru
%F AL_2022_61_4_a5
N. T. Kogabaev. Complexity of the problem of being equivalent to Horn formulas.~II. Algebra i logika, Tome 61 (2022) no. 4, pp. 469-482. http://geodesic.mathdoc.fr/item/AL_2022_61_4_a5/

[1] N. T. Kogabaev, “O slozhnosti problemy ekvivalentnosti khornovskim formulam”, Algebra i logika, 60:6 (2021), 575–586 | MR

[2] S. N. Vasilev, “Metod sinteza uslovii vyvodimosti khornovskikh i nekotorykh drugikh formul”, Sib. matem. zh., 38:5 (1997), 1034–1046 | MR | Zbl

[3] S. N. Vassilyev, “Logical approach to control theory and applications”, Nonlinear Anal., Theory Methods Appl., 30:4 (1997), 1927–1937 | DOI | MR | Zbl

[4] S. N. Vasilev, E. A. Cherkashin, “Intellektnoe upravlenie teleskopom”, Sib. zhurn. industr. matem., 1:2 (1998), 81–98 | Zbl

[5] S. N. Vassilyev, “The reduction method. I”, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 64:2 (2006), 242–252 | DOI | MR | Zbl

[6] S. N. Vassilyev, “The reduction method. II”, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 65:5 (2006), 939–955 | DOI | MR | Zbl

[7] S. N. Vasilev, G. M. Ponomarev, “Metody avtomatizatsii logicheskogo vyvoda i ikh primenenie v upravlenii dinamicheskimi i intellektualnymi sistemami”, Tr. IMM UrO RAN, 17, no. 2, 2011, 35–52

[8] S. N. Vasilev, A. A. Galyaev, “Logiko-optimizatsionnyi podkhod k resheniyu zadachi presledovaniya gruppy tselei”, DAN, 474:6 (2017), 675–681

[9] M. E. Buzikov, A. A. Galyaev, Yu. V. Guryev, K. B. Titov, E. I. Yakushenko, S. N. Vassilyev, “Intelligent control of autonomous and anthropocentric on-board systems”, Procedia Comput. Sci., 150 (2019), 10–18 | DOI

[10] A. Horn, “On sentences which are true of direct unions of algebras”, J. Symb. Log., 16:1 (1951), 14–21 | DOI | MR | Zbl

[11] F. Galvin, “Reduced products, Horn sentences, and decision problems”, Bull. Am. Math. Soc., 73 (1967), 59–64 | DOI | MR | Zbl

[12] Zh. A. Almagambetov, “O klassakh aksiom, zamknutykh otnositelno zadannykh privedennykh proizvedenii i stepenei”, Algebra i logika, 4:3 (1965), 71–77 | MR | Zbl

[13] Yu. L. Ershov, “Razreshimost elementarnoi teorii distributivnykh struktur s otnositelnymi dopolneniyami i teorii filtrov”, Algebra i logika, 3:3 (1964), 17–38 | Zbl

[14] S. Feferman, R. L. Vaught, “The first order properties of products of algebraic systems”, Fundam. Math., 47:1 (1959), 57–103 | DOI | MR | Zbl

[15] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 3-e izd., Lan, SPb., 2004

[16] A. Ehrenfeucht, “Decidability of the theory of one function”, Notices Amer. Math. Soc., 6:3 (1959), 268

[17] A. Janiczak, “Undecidability of some simple formalized theories”, Fundam. Math., 40 (1953), 131–139 | DOI | MR | Zbl