Complexity of the problem of being equivalent to Horn formulas. II
Algebra i logika, Tome 61 (2022) no. 4, pp. 469-482

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the complexity of the existence problem for a Horn sentence equivalent to a given one. It is proved that for a signature consisting of one unary function symbol and any finite number of unary predicate symbols, the problem is computable. For a signature with at least two unary function symbols, it is stated that the problem mentioned is an $m$-complete $\Sigma^0_1$-set.
Keywords: Horn formula, $m$-reducibility, $\Sigma^0_1$-set.
@article{AL_2022_61_4_a5,
     author = {N. T. Kogabaev},
     title = {Complexity of the problem of being equivalent to {Horn} {formulas.~II}},
     journal = {Algebra i logika},
     pages = {469--482},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_4_a5/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - Complexity of the problem of being equivalent to Horn formulas. II
JO  - Algebra i logika
PY  - 2022
SP  - 469
EP  - 482
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_4_a5/
LA  - ru
ID  - AL_2022_61_4_a5
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T Complexity of the problem of being equivalent to Horn formulas. II
%J Algebra i logika
%D 2022
%P 469-482
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_4_a5/
%G ru
%F AL_2022_61_4_a5
N. T. Kogabaev. Complexity of the problem of being equivalent to Horn formulas. II. Algebra i logika, Tome 61 (2022) no. 4, pp. 469-482. http://geodesic.mathdoc.fr/item/AL_2022_61_4_a5/