A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups
Algebra i logika, Tome 61 (2022) no. 4, pp. 424-442.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum $\omega(G)$ of a finite group $G$ is the set of orders of its elements. The following sufficient criterion of nonsolvability is proved: if, among the prime divisors of the order of a group $G$, there are four different primes such that $\omega(G)$ contains all their pairwise products but not a product of any three of these numbers, then $G$ is nonsolvable. Using this result, we show that for $q\geqslant 8$ and $q\neq 32$, the direct square $Sz(q)\times Sz(q)$ of the simple exceptional Suzuki group $Sz(q)$ is uniquely characterized by its spectrum in the class of finite groups, while for $Sz(32)\times Sz(32)$, there are exactly four finite groups with the same spectrum.
Keywords: criterion of nonsolvability, element orders, recognition by spectrum.
Mots-clés : simple exceptional group
@article{AL_2022_61_4_a2,
     author = {Zh. Wang and A. V. Vasil'ev and M. A. Grechkoseeva and A. Kh. Zhurtov},
     title = {A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups},
     journal = {Algebra i logika},
     pages = {424--442},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_4_a2/}
}
TY  - JOUR
AU  - Zh. Wang
AU  - A. V. Vasil'ev
AU  - M. A. Grechkoseeva
AU  - A. Kh. Zhurtov
TI  - A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups
JO  - Algebra i logika
PY  - 2022
SP  - 424
EP  - 442
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_4_a2/
LA  - ru
ID  - AL_2022_61_4_a2
ER  - 
%0 Journal Article
%A Zh. Wang
%A A. V. Vasil'ev
%A M. A. Grechkoseeva
%A A. Kh. Zhurtov
%T A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups
%J Algebra i logika
%D 2022
%P 424-442
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_4_a2/
%G ru
%F AL_2022_61_4_a2
Zh. Wang; A. V. Vasil'ev; M. A. Grechkoseeva; A. Kh. Zhurtov. A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups. Algebra i logika, Tome 61 (2022) no. 4, pp. 424-442. http://geodesic.mathdoc.fr/item/AL_2022_61_4_a2/

[1] M. A. Grechkoseeva, V. D. Mazurov, W. Shi, A. V. Vasil'ev, N. Yang, “Finite groups isospectral to simple groups”, Commun. Math. Stat., 2022 | DOI | Zbl

[2] J. Zhang, “Arithmetical conditions on element orders and group structure”, Proc. Am. Math. Soc., 123:1 (1995), 39–44 | DOI | MR | Zbl

[3] T. M. Keller, “Solvable groups with a small number of prime divisors in the element orders”, J. Algebra, 170:2 (1994), 625–648 | DOI | MR | Zbl

[4] I. B. Gorshkov, N. V. Maslova, “The group $J_4\times J_4$ is recognizable by spectrum”, J. Algebra Appl., 20:4 (2021), 2150061, 14 pp. | DOI | MR | Zbl

[5] A. V. Vasilev, E. P. Vdovin, “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[6] V. D. Mazurov, “Raspoznavanie konechnykh neprostykh grupp po mnozhestvu poryadkov ikh elementov”, Algebra i logika, 36:3 (1997), 304–322 | MR | Zbl

[7] W. Shi, “A characterization of Suzuki's simple groups”, Proc. Am. Math. Soc., 114:3 (1992), 589–591 | DOI | MR | Zbl

[8] N. D. Podufalov, “Konechnye prostye gruppy bez elementov poryadka $6$”, Algebra i logika, 16:2 (1977), 200–203 | MR | Zbl

[9] L. M. Gordon, “Finite simple groups with no elements of order six”, Bull. Aust. Math. Soc., 17:2 (1977), 235–246 | DOI | MR | Zbl

[10] L. R. Fletcher, B. Stellmacher, W. B. Stewart, “Endliche Gruppen, die kein Element der Ordnung $6$ enthalten”, Q. J. Math., Oxf. II. Ser., 28:110 (1977), 143–154 | DOI | MR | Zbl

[11] A. S. Bang, “Talteoretiske undersøgelser”, Tidsskrift for Math., 5. Ser., 4 (1886), 70–80; 130–137

[12] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[13] G. Higman, “Finite groups in which every element has prime power order”, J. London Math. Soc., 32 (1957), 335–342 | DOI | MR | Zbl

[14] P. Hall, G. Higman, “On the $p$-length of $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. Lond. Math. Soc., III. Ser., 6:1 (1956), 1–42 | MR | Zbl

[15] A. V. Zavarnitsin, V. D. Mazurov, “O poryadkakh elementov v nakrytiyakh simmetricheskikh i znakoperemennykh grupp”, Algebra i logika, 38:3 (1999), 296–315 | MR | Zbl

[16] V. D. Mazurov, “Kharakterizatsiya konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[17] A. V. Vasil'ev, “On finite groups isospectral to simple classical groups”, J. Algebra, 423 (2015), 318–374 | DOI | MR | Zbl

[18] M. Suzuki, “On class of double transitive groups”, Ann. Math. (2), 75:1 (1962), 105–145 | DOI | MR | Zbl

[19] J. L. Alperin, D. Gorenstein, “The multiplicators of certain simple groups”, Proc. Am. Math. Soc., 17 (1966), 515–519 | DOI | MR | Zbl

[20] P. H. Tiep, A. E. Zalesski, “Hall–Higman type theorems for exceptional groups of Lie type, I”, J. Algebra, 607, Part A (2022), 755–794 | DOI | MR

[21] M. A. Grechkoseeva, “Poryadki elementov konechnykh pochti prostykh grupp”, Algebra i logika, 56:6 (2017), 754–758 | MR

[22] D. Gorenstein, Finite groups, Harper's Ser. Modern Math., Harper Row Publ, New York etc., 1968 | MR | Zbl

[23] M. S. Lucido, “Prime graph components of finite almost simple groups”, Rend. Semin. Mat. Univ. Padova, 102 (1999), 1–22 | MR | Zbl