Algebraic properties of subquasigroups and construction of finite quasigroups
Algebra i logika, Tome 61 (2022) no. 4, pp. 375-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

Many important properties are identified and criteria are developed for the existence of subquasigroups in finite quasigroups. Based on these results, we propose an effective method that concludes the nonexistence of proper subquasigroups in a given quasigroup, or finds all its proper subquasigroups. This has an important application in checking the cryptographic suitability of a quasigroup. Using arithmetic of finite fields, we introduce a binary operation to construct quasigroups of order $p^r$. Criteria are developed under which the quasigroups mentioned have desirable cryptographic properties, such as polynomial completeness and absence of proper subquasigroups. Effective methods are given for constructing cryptographically suitable quasigroups. The efficiency of the methods is illustrated by some standard examples and by implementation of all proposed algorithms in the computer algebra system Singular.
Mots-clés : quasigroup
Keywords: subquasigroup, polynomial completeness.
@article{AL_2022_61_4_a0,
     author = {V. A. Artamonov and S. Chakrabarti and Sh. K. Tiwari and V. T. Markov},
     title = {Algebraic properties of subquasigroups and construction of finite quasigroups},
     journal = {Algebra i logika},
     pages = {375--400},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_4_a0/}
}
TY  - JOUR
AU  - V. A. Artamonov
AU  - S. Chakrabarti
AU  - Sh. K. Tiwari
AU  - V. T. Markov
TI  - Algebraic properties of subquasigroups and construction of finite quasigroups
JO  - Algebra i logika
PY  - 2022
SP  - 375
EP  - 400
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_4_a0/
LA  - ru
ID  - AL_2022_61_4_a0
ER  - 
%0 Journal Article
%A V. A. Artamonov
%A S. Chakrabarti
%A Sh. K. Tiwari
%A V. T. Markov
%T Algebraic properties of subquasigroups and construction of finite quasigroups
%J Algebra i logika
%D 2022
%P 375-400
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_4_a0/
%G ru
%F AL_2022_61_4_a0
V. A. Artamonov; S. Chakrabarti; Sh. K. Tiwari; V. T. Markov. Algebraic properties of subquasigroups and construction of finite quasigroups. Algebra i logika, Tome 61 (2022) no. 4, pp. 375-400. http://geodesic.mathdoc.fr/item/AL_2022_61_4_a0/

[1] G. B. Belyavskaya, “$T$-kvazigruppy i tsentr kvazigruppy”, Matem. issled., 111, Shtiintsa, Kishinev, 1989, 24–43

[2] G. B. Belyavskaya, A. Kh. Tabarov, “Kharakteristika lineinykh i alineinykh kvazigrupp”, Diskret. matem., 4:2 (1992), 142–147 | MR | Zbl

[3] A. D. Keedwell, J. Dénes, Latin squares and their applications, 2nd ed., Elsevier, Amsterdam, 2015 | MR | Zbl

[4] J. Dénes, A. D. Keedwell (eds.), Latin squares. New developments in the theory and applications, Ann. Discrete Math., 46, North-Holland, Amsterdam etc., 1991 | MR | Zbl

[5] T. Kepka, “A note on simple quasigroups”, Acta Univ. Carol., Math. Phys., 19:2 (1978), 59–60 | MR | Zbl

[6] P. Nemec, T. Kepka, “$T$-quasigroups. I”, Acta Univ. Carol., Math. Phys., 12:1 (1971), 39–49 ; (1972) | MR

[7] G. B. Belyavskaya, “Abelian quasigroups are $T$-quasigroups”, Quasigroups Relat. Syst., 1:1 (1994), 1–7 | MR | Zbl

[8] V. A. Shcherbacov, Elements of quasigroup theory and applications, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2017 | MR | Zbl

[9] J. D. H. Smith, An introduction to quasigroups and their representations, Stud. Adv. Math., Chapman Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl

[10] V. A. Artamonov, “Polinomialno polnye algebry”, Uch. zapiski Orlovskogo gos. un-ta, 6:2 (2012), 23–29

[11] V. A. Artamonov, S. Chakrabarti, S. Gangopadhyay, S. K. Pal, “On Latin squares of polynomially complete quasigroups and quasigroups generated by shifts”, Quasigroups Relat. Syst., 21:2 (2013), 117–130 | MR | Zbl

[12] V. A. Artamonov, S. Chakrabarti, S. K. Pal, “Characterizations of highly non-associative quasigroups and associative triples”, Quasigroups Relat. Syst., 25:1 (2017), 1–19 | MR | Zbl

[13] A. V. Galatenko, A. E. Pankratev, S. B. Rodin, “O polinomialno polnykh kvazigruppakh prostogo poryadka”, Algebra i logika, 57:5 (2018), 509–521 | MR

[14] O. Grošek, P. Horák, “On quasigroups with few associative triples”, Des. Codes Cryptography, 64:1/2 (2012), 221–227 | MR | Zbl

[15] V. A. Artamonov, S. Chakrabarti, S. K. Pal, “Characterization of polynomially complete quasigroups based on Latin squares for cryptographic transformations”, Discrete Appl. Math., 200 (2016), 5–17 | DOI | MR | Zbl

[16] V. A. Artamonov, “Avtomorfizmy konechnykh kvazigrupp bez podkvazigrupp”, Vestn. S.-Peterburg. un-ta. Matem. Mekhan. Astronomiya, 7:2 (2020), 197–209

[17] S. Markovski, D. Gligoroski, S. Andova, “Using quasigroups for one-one secure encoding”, Proc. VIII int. conf. logic comp. sci.: Theoretical foundations of computer science, Lira '97 (Novi Sad, Yugoslavia, September 1-4, 1997), eds. R. Tošić et al., Univ. Novi Sad, Inst. Math., Novi Sad, 1997, 157–162 | Zbl

[18] S. Markovski, D. Gligoroski, V. Bakeva, “Quasigroup string processing-part 1, Contributions”, Sec. Math. Tech. Sci. MANU, 1999, 13–28 | MR

[19] V. Dimitrova, J. Markovski, “On quasigroup pseudo random sequence generator”, Proc. 1-st Balkan Conf. Inform. (Thessaloniki, 2004), 393–401

[20] G. Horváth, C. L. Nehaniv, C. Szabó, “An assertion concerning functionally complete algebras and NP-completeness”, Theor. Comput. Sci., 407:1-3 (2008), 591–595 | DOI | MR | Zbl

[21] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, 2019 http://www.singular.uni-kl.de | MR

[22] J. Hagemann, C. Herrmann, “Arithmetical locally equational classes and representation of partial functions”, Universal algebra, Proc. Colloq. (Esztergom/Hung. 1977), Colloq. Math. Soc. Janos Bolyai, 29, 1982, 345–360 | MR | Zbl

[23] D. W. Wall, “Sub-quasigroups of finite quasigroups”, Pac. J. Math., 7 (1957), 1711–1714 | DOI | MR | Zbl

[24] J. D. Phillips, J. D. H. Smith, “Quasiprimitivity and quasigroups”, Bull. Aust. Math. Soc., 59:3 (1999), 473–475 | DOI | MR | Zbl

[25] R. Lidl, H. Niederreiter, Finite fields, Encycl. Math. Appl., 20, 2nd ed., Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[26] J. Daemen, V. Rijmen, The design of Rijndael, AES — the Advanced Encryption Standard, Springer, Berlin, 2002 | MR | Zbl