О замыканиях конечных групп подстановок
Algebra i logika, Tome 61 (2022) no. 3, pp. 359-366.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2022_61_3_a6,
     author = {D. V. Churikov},
     title = {{\CYRO} {\cyrz}{\cyra}{\cyrm}{\cyrery}{\cyrk}{\cyra}{\cyrn}{\cyri}{\cyrya}{\cyrh} {\cyrk}{\cyro}{\cyrn}{\cyre}{\cyrch}{\cyrn}{\cyrery}{\cyrh} {\cyrg}{\cyrr}{\cyru}{\cyrp}{\cyrp} {\cyrp}{\cyro}{\cyrd}{\cyrs}{\cyrt}{\cyra}{\cyrn}{\cyro}{\cyrv}{\cyro}{\cyrk}},
     journal = {Algebra i logika},
     pages = {359--366},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_3_a6/}
}
TY  - JOUR
AU  - D. V. Churikov
TI  - О замыканиях конечных групп подстановок
JO  - Algebra i logika
PY  - 2022
SP  - 359
EP  - 366
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_3_a6/
LA  - ru
ID  - AL_2022_61_3_a6
ER  - 
%0 Journal Article
%A D. V. Churikov
%T О замыканиях конечных групп подстановок
%J Algebra i logika
%D 2022
%P 359-366
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_3_a6/
%G ru
%F AL_2022_61_3_a6
D. V. Churikov. О замыканиях конечных групп подстановок. Algebra i logika, Tome 61 (2022) no. 3, pp. 359-366. http://geodesic.mathdoc.fr/item/AL_2022_61_3_a6/

[1] H. Wielandt, “Permutation groups through invariant relation and invariant functions”: H. Wielandt, Mathematische Werke. Mathematical works, Lect. Notes Dept. Math. Ohio St. Univ. (Columbus, 1969), v. 1, Group theory, eds. B. Huppert, H. Schneider, Walter de Gruyter, Berlin, 1994, 237–266 | MR

[2] L. A. Kaluzhnin, M. Kh. Klin, “O nekotorykh chislovykh invariantakh grupp podstanovok”, Latv. matem. ezhegodnik, 18:1 (1976), 81–99 | MR | Zbl

[3] A. V. Vasilev, I. N. Ponomarenko, “Zamykaniya spletenii, deistvuyuschikh na dekartovykh stepenyakh”, Algebra i logika, 60:3 (2021), 286–297 | Zbl

[4] M. W. Liebeck, C. E. Praeger, J. Saxl, “On the $2$-closures of finite permutation groups”, J. Lond. Math. Soc., II. Ser., 37:2 (1988), 241–252 | DOI | MR | Zbl

[5] C. E. Praeger, J. Saxl, “Closures of finite primitive permutation groups”, Bull. Lond. Math. Soc., 24:3 (1992), 251–258 | DOI | MR | Zbl

[6] E. A. O'Brien, I. Ponomarenko, A. V. Vasil'ev, E. Vdovin, “The 3-closure of a solvable permutation group is solvable”, J. Algebra, 607:Part A (2022), 618–637 | DOI | MR | Zbl

[7] D. V. Churikov, “Struktura $k$-zamykanii konechnykh nilpotentnykh grupp podstanovok”, Algebra i logika, 60:2 (2021), 231–239 | MR | Zbl

[8] D. Churikov, I. Ponomarenko, “On 2-closed abelian permutation groups”, Commun. Algebra, 50:4 (2022), 1792–1801 | DOI | MR | Zbl

[9] A. Abdollahi, M. Arezoomand, G. Tracey, On finite totally 2-closed groups, arXiv: 2001.09597 [math.GR]

[10] A. Z. Zelikovskii, “Zadacha Keniga dlya abelevykh grupp perestanovok”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 125:5 (1989), 34–39 | MR

[11] M. Grech, A. Kisielewicz, “Abelian permutation groups with graphical representations”, J. Algebr. Comb., 55:2 (2022), 513–531 | DOI | MR | Zbl

[12] I. N. Ponomarenko, “Graph isomorphism problem and 2-closed permutation groups”, Appl. Algebra Eng. Commun. Comput., 5:1 (1994), 9–22 | DOI | MR | Zbl

[13] S. Evdokimov, I. Ponomarenko, “Two-closure of odd permutation group in polynomial time”, Discrete Math., 235:1–3 (2001), 221–232 | DOI | MR | Zbl

[14] I. Ponomarenko, A. Vasil'ev, “Two-closure of supersolvable permutation group in polynomial time”, Computational Complexity, 29:5 (2020), 33 pp. | MR | Zbl

[15] A. Abdollahi, M. Arezoomand, “Finite nilpotent groups that coincide with their 2-closures in all of their faithful permutation representations”, J. Algebra Appl., 17:4 (2018), 1850065, 11 pp. | DOI | MR | Zbl

[16] M. Arezoomand, M. A. Iranmanesh, C. E. Praeger, G. Tracey, Totally 2-closed finite groups with trivial Fitting subgroup, arXiv: 2111.02253 [math.GR]

[17] D. Churikov, Ch. E. Praeger, “Finite totally $k$-closed groups”, Tr. IMM UrO RAN, 27, no. 1, 2021, 240–245 | MR

[18] L. Babai, “Groups, graphs, algorithms: the graph isomorphism problem”, Proc. ICM 2018 (Rio de Janeiro), v. 3, 2015, 3303–3320 | MR

[19] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl

[20] P. Delsarte, “An algebraic approach to the association schemes of coding theory”, Philips Research Reports Suppl., 1973, no. 10, 97 pp. | MR

[21] J. Bagherian, I. Ponomarenko, A. Rahnamai Barghi, “On cyclotomic schemes over finite near-fields”, J. Algebr. Comb., 27:2 (2008), 173–185 | DOI | MR | Zbl

[22] D. V. Churikov, A. V. Vasil'ev, “Automorphism groups of cyclotomic schemes over finite near-fields”, Sib. elektron. matem. izv., 13 (2016), 1271–1282 http://semr.math.nsc.ru/v13/p1271-1282.pdf | MR | Zbl

[23] D. S. Passman, “Exponential $\frac{3}{2}$-transitive permutation groups”, Pac. J. Math., 29 (1969), 669–713 | DOI | MR | Zbl

[24] J. Bamberg, M. Giudici, M. W. Liebeck, C. E. Praeger, J. Saxl, “The classification of almost simple $\frac{3}{2}$-transitive groups”, Trans. Am. Math. Soc., 365:8 (2013), 4257–4311 | DOI | MR | Zbl

[25] M. W. Liebeck, C. E. Praeger, J. Saxl, “The classification of $\frac{3}{2}$-transitive permutation groups and $\frac{1}{2}$-transitive linear groups”, Proc. Am. Math. Soc., 147:12 (2019), 5023–5037 \pagebreak | DOI | MR | Zbl

[26] A. V. Vasilev, D. V. Churikov, “2-zamykanie $\frac{3}{2}$-tranzitivnykh grupp za polinomialnoe vremya”, Sib. matem. zh., 60:2 (2019), 360–375 | MR | Zbl