Divisible rigid groups. Morley rank
Algebra i logika, Tome 61 (2022) no. 3, pp. 308-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a countable saturated model of the theory $\mathfrak{T}_m$ of divisible $m$-rigid groups. Fix the splitting $G_1G_2\ldots G_m$ of a group $G$ into a semidirect product of Abelian groups. With each tuple $(n_1,\ldots,n_m)$ of nonnegative integers we associate an ordinal $$\alpha=\omega^{m-1}n_m+\ldots+\omega n_2+n_1$$ and denote by $G^{(\alpha)}$ the set $G_1^{n_1}\times G_2^{n_2}\times\ldots\times G_m^{n_m}$, which is definable over $G$ in $G^{n_1+\ldots+n_m}$. Then the Morley rank of $G^{(\alpha)}$ with respect to $G$ is equal to $\alpha$. This implies that $${\rm RM} (G)=\omega^{m-1}+\omega^{m-2}+\ldots+1.$$
Mots-clés : divisible $m$-rigid group
Keywords: Morley rank.
@article{AL_2022_61_3_a2,
     author = {N. S. Romanovskii},
     title = {Divisible rigid groups. {Morley} rank},
     journal = {Algebra i logika},
     pages = {308--333},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_3_a2/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Divisible rigid groups. Morley rank
JO  - Algebra i logika
PY  - 2022
SP  - 308
EP  - 333
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_3_a2/
LA  - ru
ID  - AL_2022_61_3_a2
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Divisible rigid groups. Morley rank
%J Algebra i logika
%D 2022
%P 308-333
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_3_a2/
%G ru
%F AL_2022_61_3_a2
N. S. Romanovskii. Divisible rigid groups. Morley rank. Algebra i logika, Tome 61 (2022) no. 3, pp. 308-333. http://geodesic.mathdoc.fr/item/AL_2022_61_3_a2/

[1] N. S. Romanovskii, “Delimye zhestkie gruppy. Algebraicheskaya zamknutost i elementarnaya teoriya”, Algebra i logika, 56:5 (2017), 593–612 | MR | Zbl

[2] A. G. Myasnikov, N. S. Romanovskii, “Delimye zhestkie gruppy. II. Stabilnost, nasyschennost i elementarnye podmodeli”, Algebra i logika, 57:1 (2018), 43–56 | MR | Zbl

[3] N. S. Romanovskii, “Delimye zhestkie gruppy. III. Odnorodnost i eliminatsiya kvantorov”, Algebra i logika, 57:6 (2018), 733–748 | MR

[4] N. S. Romanovskii, “Delimye zhestkie gruppy. IV. Opredelimye podgruppy”, Algebra i logika, 59:3 (2020), 344–366 | MR | Zbl

[5] N. Romanovskii, “Rigid solvable groups. Algebraic geometry and model theory”, Groups and model theory, GAGTA book, 2, eds. O. Kharlampovich et al., De Gruyter, Berlin, 2021, 193–229 | Zbl

[6] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[7] N. S. Romanovskii, “Neterovost po uravneniyam zhestkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR | Zbl

[8] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhestkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR | Zbl

[9] N. S. Romanovskii, “O neprivodimosti affinnogo prostranstva v algebraicheskoi geometrii nad gruppoi”, Algebra i logika, 52:3 (2013), 386–391 | MR | Zbl

[10] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR