Minimal generalized computable numberings and families of positive preorders
Algebra i logika, Tome 61 (2022) no. 3, pp. 280-307

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $A$-computable numberings for various natural classes of sets. For an arbitrary oracle $A\geq_T \mathbf{0'}$, an example of an $A$-computable family $S$ is constructed in which each $A$-computable numbering of $S$ has a minimal cover, and at the same time, $S$ does not satisfy the sufficient conditions for the existence of minimal covers specified by S. A. Badaev and S. Yu. Podzorov in [Sib. Math. J., 43, No. 4, 616–622 (2002)]. It is proved that the family of all positive linear preorders has an $A$-computable numbering iff $A' \geq_T \mathbf{0}''$. We obtain a series of results on minimal $A$-computable numberings, in particular, Friedberg numberings and positive undecidable numberings.
Keywords: $A$-computable numbering, positive linear preorder, Rogers semilattice, Friedberg numbering, positive numbering, minimal cover.
@article{AL_2022_61_3_a1,
     author = {F. Rakymzhankyzy and N. A. Bazhenov and A. A. Issakhov and B. S. Kalmurzayev},
     title = {Minimal generalized computable numberings and families of positive preorders},
     journal = {Algebra i logika},
     pages = {280--307},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_3_a1/}
}
TY  - JOUR
AU  - F. Rakymzhankyzy
AU  - N. A. Bazhenov
AU  - A. A. Issakhov
AU  - B. S. Kalmurzayev
TI  - Minimal generalized computable numberings and families of positive preorders
JO  - Algebra i logika
PY  - 2022
SP  - 280
EP  - 307
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_3_a1/
LA  - ru
ID  - AL_2022_61_3_a1
ER  - 
%0 Journal Article
%A F. Rakymzhankyzy
%A N. A. Bazhenov
%A A. A. Issakhov
%A B. S. Kalmurzayev
%T Minimal generalized computable numberings and families of positive preorders
%J Algebra i logika
%D 2022
%P 280-307
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_3_a1/
%G ru
%F AL_2022_61_3_a1
F. Rakymzhankyzy; N. A. Bazhenov; A. A. Issakhov; B. S. Kalmurzayev. Minimal generalized computable numberings and families of positive preorders. Algebra i logika, Tome 61 (2022) no. 3, pp. 280-307. http://geodesic.mathdoc.fr/item/AL_2022_61_3_a1/