Minimal generalized computable numberings and families of positive preorders
Algebra i logika, Tome 61 (2022) no. 3, pp. 280-307
Voir la notice de l'article provenant de la source Math-Net.Ru
We study $A$-computable numberings for various natural classes of sets. For an arbitrary oracle $A\geq_T \mathbf{0'}$, an example of an $A$-computable family $S$ is constructed in which each $A$-computable numbering of $S$ has a minimal cover, and at the same time, $S$ does not satisfy the sufficient conditions for the existence of minimal covers specified by S. A. Badaev and S. Yu. Podzorov in [Sib. Math. J., 43, No. 4, 616–622 (2002)]. It is proved that the family of all positive linear preorders has an $A$-computable numbering iff $A' \geq_T \mathbf{0}''$. We obtain a series of results on minimal $A$-computable numberings, in particular, Friedberg numberings and positive undecidable numberings.
Keywords:
$A$-computable numbering, positive linear preorder, Rogers semilattice, Friedberg numbering, positive numbering, minimal cover.
@article{AL_2022_61_3_a1,
author = {F. Rakymzhankyzy and N. A. Bazhenov and A. A. Issakhov and B. S. Kalmurzayev},
title = {Minimal generalized computable numberings and families of positive preorders},
journal = {Algebra i logika},
pages = {280--307},
publisher = {mathdoc},
volume = {61},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2022_61_3_a1/}
}
TY - JOUR AU - F. Rakymzhankyzy AU - N. A. Bazhenov AU - A. A. Issakhov AU - B. S. Kalmurzayev TI - Minimal generalized computable numberings and families of positive preorders JO - Algebra i logika PY - 2022 SP - 280 EP - 307 VL - 61 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2022_61_3_a1/ LA - ru ID - AL_2022_61_3_a1 ER -
%0 Journal Article %A F. Rakymzhankyzy %A N. A. Bazhenov %A A. A. Issakhov %A B. S. Kalmurzayev %T Minimal generalized computable numberings and families of positive preorders %J Algebra i logika %D 2022 %P 280-307 %V 61 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2022_61_3_a1/ %G ru %F AL_2022_61_3_a1
F. Rakymzhankyzy; N. A. Bazhenov; A. A. Issakhov; B. S. Kalmurzayev. Minimal generalized computable numberings and families of positive preorders. Algebra i logika, Tome 61 (2022) no. 3, pp. 280-307. http://geodesic.mathdoc.fr/item/AL_2022_61_3_a1/