Decomposability and computability
Algebra i logika, Tome 61 (2022) no. 2, pp. 220-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a new construction of indecomposable type $\mathbf{0}$ Abelian groups of rank $2$. The new construction is used to study degree spectra of such groups. As a corollary, we obtain a new computability-theoretic proof showing that there exist continuum many nonisomorphic type $\mathbf{0}$ indecomposable Abelian groups of rank $2$.
Keywords: indecomposable type $\mathbf{0}$ Abelian groups of rank $2$.
@article{AL_2022_61_2_a4,
     author = {B. Khoussainov and A. G. Melnikov},
     title = {Decomposability and computability},
     journal = {Algebra i logika},
     pages = {220--229},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_2_a4/}
}
TY  - JOUR
AU  - B. Khoussainov
AU  - A. G. Melnikov
TI  - Decomposability and computability
JO  - Algebra i logika
PY  - 2022
SP  - 220
EP  - 229
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_2_a4/
LA  - ru
ID  - AL_2022_61_2_a4
ER  - 
%0 Journal Article
%A B. Khoussainov
%A A. G. Melnikov
%T Decomposability and computability
%J Algebra i logika
%D 2022
%P 220-229
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_2_a4/
%G ru
%F AL_2022_61_2_a4
B. Khoussainov; A. G. Melnikov. Decomposability and computability. Algebra i logika, Tome 61 (2022) no. 2, pp. 220-229. http://geodesic.mathdoc.fr/item/AL_2022_61_2_a4/

[1] H. Prüfer, “Untersuchungen über die Zerlegbarkeit der abzählbaren primären Abelschen Gruppen”, Math. Zeitschr., 17:1 (1923), 35–61 | DOI | MR | Zbl

[2] F. Levi, Abelsche Gruppen mit abzählbaren Elementen, Thesis, Leipzig, 1919

[3] L. Pontrjagin, “The theory of topological commutative groups”, Ann. of Math. (2), 35:2 (1934), 361–388 | DOI | MR

[4] A. Kurosch, “Primitive torsionsfreie Abelsche Gruppen vom endlichen Range”, Ann. of Math. (2), 38:1 (1937), 175–203 | DOI | MR

[5] R. Baer, “Abelian groups without elements of finite order”, Duke Math. J., 3:1 (1937), 68–122 | DOI | MR

[6] J. de Groot, “Indecomposable abelian groups”, Nederl. Akad. Wet. Proc., Ser. A, 60 (1957), 137–145 | MR | Zbl

[7] L. Fuchs, “On a directly indecomposable abelian group of power greater than continuum”, Acta Math. Acad. Sci. Hung., 8 (1957), 453–454 | DOI | MR | Zbl

[8] D. Arnold, A. Mader, O. Mutzbauer, E. Solak, “Representations of posets and indecomposable torsion-free abelian groups”, Commun. Algebra, 42:3 (2014), 1287–1311 | DOI | MR | Zbl

[9] A. Mader, Ph. Schultz, “Indecomposable decompositions of torsion-free abelian groups”, J. Algebra, 506 (2018), 267–296 | DOI | MR | Zbl

[10] L. Fuchs, Infinite Abelian groups, v. II, Pure Appl. Math., 36, Academic Press, New York–London, 1973 | MR | Zbl

[11] L. Fuchs, F. Loonstra, “On the cancellation of modules in direct sums over Dedekind domains”, Nederl. Akad. Wet., Proc., Ser. A, 74 (1971), 163–169 | MR | Zbl

[12] L. J. Richter, “Degrees of structures”, J. Symb. Log., 46:4 (1981), 723–731 | DOI | MR | Zbl

[13] A. I. Maltsev, “O rekursivnykh abelevykh gruppakh”, Dokl. AN SSSR, 146:5 (1962), 1009–1012 | Zbl

[14] M. O. Rabin, “Computable algebra, general theory and theory of computable fields”, Trans. Am. Math. Soc., 95 (1960), 341–360 | MR | Zbl

[15] A. G. Melnikov, “Enumerations and completely decomposable torsion-free abelian groups”, Theory Comput. Syst., 45:4 (2009), 897–916 | DOI | MR | Zbl

[16] I. Kalimullin, B. Khoussainov, A. Melnikov, “Limitwise monotonic sequences and degree spectra of structures”, Proc. Am. Math. Soc., 141:9 (2013), 3275–3289 | DOI | MR | Zbl

[17] A. G. Melnikov, “New degree spectra of abelian groups”, Notre Dame J. Formal Logic, 58:4 (2017), 507–525 | DOI | MR | Zbl

[18] R. G. Downey, “On presentations of algebraic structures”, Complexity, logic, and recursion theory, Lect. Notes Pure Appl. Math., 187, ed. A. Sorbi, Marcel Dekker, New York, NY, 1997, 157–205 | MR | Zbl

[19] R. J. Coles, R. G. Downey, T. A. Slaman, “Every set has a least jump enumeration”, J. London Math. Soc., II. Ser., 62:3 (2000), 641–649 | DOI | MR | Zbl

[20] J. F. Knight, M. Stob, “Computable Boolean algebras”, J. Symb. Log., 65:4 (2000), 1605–1623 | DOI | MR | Zbl

[21] W. Calvert, V. Harizanov, A. Shlapentokh, “Turing degrees of isomorphism types of algebraic objects”, J. Lond. Math. Soc., II. Ser., 75:2 (2007), 273–286 | DOI | MR | Zbl

[22] Y. Bugeaud, J.-Y. Yao, “Hankel determinants, Padé approximations, and irrationality exponents for $p$-adic numbers”, Ann. Mat. Pura Appl. (4), 196:3 (2017), 929–946 | DOI | MR | Zbl

[23] J. F. Knight, “Degrees coded in jumps of orderings”, J. Symb. Log., 51:4 (1986), 1034–1042 | DOI | MR | Zbl

[24] L. Fuchs, Infinite Abelian groups, v. I, Pure Appl. Math., 36, Academic Press, New York–London, 1970 | MR | Zbl