Group signature formulas constructed from graphs
Algebra i logika, Tome 61 (2022) no. 2, pp. 201-219

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a finite undirected graph $\Gamma$ without loops, we define a sentence $\Phi(\Gamma)$ of group theory. A sequence of graphs $\Gamma_i$ is used to obtain a sequence of sentences $\Phi(\Gamma_i)$. These are employed to determine the $\Gamma$-dimension of a group and to study properties of the dimension. Under certain restrictions on a group, the known centralizer dimension is the $\Gamma$-dimension for some sequence of graphs. We mostly focus on dimensions defined by using linear graphs and cycles. Dimensions for a number of partially commutative metabelian groups are computed.
Keywords: undirected graph, partially commutative metabelian group.
Mots-clés : $\Gamma$-dimension of group
@article{AL_2022_61_2_a3,
     author = {E. I. Timoshenko},
     title = {Group signature formulas constructed from graphs},
     journal = {Algebra i logika},
     pages = {201--219},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_2_a3/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Group signature formulas constructed from graphs
JO  - Algebra i logika
PY  - 2022
SP  - 201
EP  - 219
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_2_a3/
LA  - ru
ID  - AL_2022_61_2_a3
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Group signature formulas constructed from graphs
%J Algebra i logika
%D 2022
%P 201-219
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_2_a3/
%G ru
%F AL_2022_61_2_a3
E. I. Timoshenko. Group signature formulas constructed from graphs. Algebra i logika, Tome 61 (2022) no. 2, pp. 201-219. http://geodesic.mathdoc.fr/item/AL_2022_61_2_a3/