Group signature formulas constructed from graphs
Algebra i logika, Tome 61 (2022) no. 2, pp. 201-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a finite undirected graph $\Gamma$ without loops, we define a sentence $\Phi(\Gamma)$ of group theory. A sequence of graphs $\Gamma_i$ is used to obtain a sequence of sentences $\Phi(\Gamma_i)$. These are employed to determine the $\Gamma$-dimension of a group and to study properties of the dimension. Under certain restrictions on a group, the known centralizer dimension is the $\Gamma$-dimension for some sequence of graphs. We mostly focus on dimensions defined by using linear graphs and cycles. Dimensions for a number of partially commutative metabelian groups are computed.
Keywords: undirected graph, partially commutative metabelian group.
Mots-clés : $\Gamma$-dimension of group
@article{AL_2022_61_2_a3,
     author = {E. I. Timoshenko},
     title = {Group signature formulas constructed from graphs},
     journal = {Algebra i logika},
     pages = {201--219},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_2_a3/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Group signature formulas constructed from graphs
JO  - Algebra i logika
PY  - 2022
SP  - 201
EP  - 219
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_2_a3/
LA  - ru
ID  - AL_2022_61_2_a3
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Group signature formulas constructed from graphs
%J Algebra i logika
%D 2022
%P 201-219
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_2_a3/
%G ru
%F AL_2022_61_2_a3
E. I. Timoshenko. Group signature formulas constructed from graphs. Algebra i logika, Tome 61 (2022) no. 2, pp. 201-219. http://geodesic.mathdoc.fr/item/AL_2022_61_2_a3/

[1] A. I. Maltsev, “O svobodnykh razreshimykh gruppakh”, Dokl. AN SSSR, 130:3 (1960), 495–498 | Zbl

[2] A. J. Dunkan, I. V. Kazachkov, V. N. Remeslennikov, “Centraliser dimension and universal classes of groups”, Sib. elektron. matem. izv., 3 (2006), 197–215 http://semr.math.nsc.ru/v3/p197-215.pdf | MR

[3] E. I. Timoshenko, “Universalnye teorii i tsentralizatornye razmernosti grupp”, Algebra i logika, 58:3 (2019), 397–416 | MR | Zbl

[4] A. A. Mischenko, A. V. Treier, “Grafy kommutativnosti dlya chastichno kommutativnykh dvustupenno nilpotentnykh $\mathbb Q$-grupp”, Sib. elektron. matem. izv., 4 (2007), 460–481 http://semr.math.nsc.ru/v4/p460-481.pdf

[5] A. A. Mischenko, E. I. Timoshenko, “Universalnaya ekvivalentnost chastichno kommutativnykh nilpotentnykh grupp”, Sib. matem. zh., 52:5 (2011), 1113–1122 | MR

[6] E. I. Timoshenko, “Universalnaya ekvivalentnost chastichno kommutativnykh metabelevykh grupp”, Algebra i logika, 49:2 (2010), 263–290 | MR | Zbl

[7] E. I. Timoshenko, “Tsentralizatornye razmernosti i universalnye teorii chastichno kommutativnykh metabelevykh grupp”, Algebra i logika, 56:2 (2017), 226–255 | MR | Zbl

[8] Ch. K. Gupta, E. I. Timoshenko, “Ob universalnykh teoriyakh chastichno kommutativnykh metabelevykh grupp”, Algebra i logika, 50:1 (2011), 3–25 | MR | Zbl

[9] A. Myasnikov, P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl

[10] E. I. Timoshenko, “Tsentralizatornye razmernosti chastichno kommutativnykh metabelevykh grupp”, Algebra i logika, 57:1 (2018), 102–117 | MR | Zbl

[11] Ch. K. Gupta, E. I. Timoshenko, “Chastichno kommutativnye metabelevy gruppy: tsentralizatory i elementarnaya ekvivalentnost”, Algebra i logika, 48:3 (2009), 309–341 | MR | Zbl

[12] E. I. Timoshenko, “Bazis chastichno kommutativnoi metabelevoi gruppy”, Izv. RAN. Ser. matem., 85:4 (2021), 205–214 | MR | Zbl

[13] V. N. Remeslennikov, “Predstavlenie konechno porozhdennykh metabelevykh grupp matritsami”, Algebra i logika, 8:1 (1969), 72–75

[14] B. A. F. Wehrfritz, “Faithful representations of finitely generated metabelian groups”, Can. J. Math., 27 (1975), 1355–1360 | DOI | MR | Zbl

[15] B. A. F. Wehrfritz, “On finitely generated soluble linear groups”, Math. Z., 170 (1980), 155–167 | DOI | MR | Zbl

[16] E. I. Timoshenko, “Ob universalno ekvivalentnykh razreshimykh gruppakh”, Algebra i logika, 39:2 (2000), 227–240 | MR | Zbl

[17] O. Chapuis, “$\forall$-free metabelian groups”, J. Symb. Log., 62:1 (1997), 159–174 | DOI | MR | Zbl