Projections of semilocal rings
Algebra i logika, Tome 61 (2022) no. 2, pp. 180-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

Associative rings are considered. By a lattice isomorphism (or projection) of a ring $R$ onto a ring $R^{\varphi}$ we mean an isomorphism $\varphi$ of the subring lattice $L(R)$ of a ring $R$ onto the subring lattice $L(R^{\varphi})$ of a ring $R^{\varphi}$. Let $M_n(GF(p^k))$ be the ring of all square matrices of order $n$ over a finite field $GF(p^k)$, where $n$ and $k$ are natural numbers, $p$ is a prime. A finite ring $R$ with identity is called a semilocal (primary) ring if $R/{\rm Rad} R\cong M_n(GF(p^k))$. It is known that a finite ring $R$ with identity is a semilocal ring iff $R\cong M_n(K)$ and $K$ is a finite local ring. Here we study lattice isomorphisms of finite semilocal rings. It is proved that if $\varphi$ is a projection of a ring $R=M_n(K)$, where $K$ is an arbitrary finite local ring, onto a ring $R^{\varphi}$, then $R^{\varphi}=M_n(K')$, in which case $K'$ is a local ring lattice-isomorphic to the ring $K$. We thus prove that the class of semilocal rings is lattice definable.
Keywords: finite semilocal rings, lattice isomorphisms of associative rings.
@article{AL_2022_61_2_a2,
     author = {S. S. Korobkov},
     title = {Projections of semilocal rings},
     journal = {Algebra i logika},
     pages = {180--200},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_2_a2/}
}
TY  - JOUR
AU  - S. S. Korobkov
TI  - Projections of semilocal rings
JO  - Algebra i logika
PY  - 2022
SP  - 180
EP  - 200
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_2_a2/
LA  - ru
ID  - AL_2022_61_2_a2
ER  - 
%0 Journal Article
%A S. S. Korobkov
%T Projections of semilocal rings
%J Algebra i logika
%D 2022
%P 180-200
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_2_a2/
%G ru
%F AL_2022_61_2_a2
S. S. Korobkov. Projections of semilocal rings. Algebra i logika, Tome 61 (2022) no. 2, pp. 180-200. http://geodesic.mathdoc.fr/item/AL_2022_61_2_a2/

[1] B. R. McDonald, Finite rings with identity, Marcel Dekker, New York, 1974 | MR | Zbl

[2] V. P. Elizarov, Konechnye koltsa. Osnovy teorii, Gelios, M., 2006

[3] D. W. Barnes, “Lattice isomorphisms of associative algebras”, J. Aust. Math. Soc., 6:1 (1966), 106–121 | DOI | MR | Zbl

[4] S. S. Korobkov, “Reshetochnaya opredelyaemost nekotorykh matrichnykh kolets”, Matem. sb., 208:1 (2017), 97–110 | MR

[5] S. S. Korobkov, “Proektirovaniya konechnykh nenilpotentnykh kolets”, Algebra i logika, 58:1 (2019), 69–83 | MR | Zbl

[6] S. S. Korobkov, “Reshetochnye izomorfizmy konechnykh lokalnykh kolets”, Algebra i logika, 59:1 (2020), 84–100 | MR | Zbl

[7] S. S. Korobkov, “Periodicheskie koltsa s razlozhimymi v pryamoe proizvedenie reshetkami podkolets”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, ed. P. A. Freidman, Ural. gos. ped. un-t, Ekaterinburg, 1998, 48–59

[8] S. S. Korobkov, “Reshetochnye izomorfizmy konechnykh kolets bez nilpotentnykh elementov”, Izv. Ural. gos. un-ta. Matem. i mekhan. Kompyuter. n., vyp. 4, 2002, no. 22, 81–93 | Zbl

[9] S. S. Korobkov, “Proektirovaniya kolets Galua”, Algebra i logika, 54:1 (2015), 16–33 | MR | Zbl

[10] S. S. Korobkov, “Konechnye koltsa, soderzhaschie v tochnosti dva maksimalnykh podkoltsa”, Izv. vuzov. Matem., 2011, no. 6, 55–62 | Zbl

[11] N. Dzhekobson, Stroenie kolets, IL, M., 1961

[12] S. S. Korobkov, “Proektirovaniya konechnykh odnoporozhdennykh kolets s edinitsei”, Algebra i logika, 55:2 (2016), 192–218 | MR | Zbl

[13] S. S. Korobkov, “Proektirovaniya konechnykh kommutativnykh kolets s edinitsei”, Algebra i logika, 57:3 (2018), 285–305 | MR | Zbl

[14] D. W. Barnes, “On the radical of a ring with minimum condition”, J. Aust. Math. Soc., 5 (1965), 234–236 | DOI | MR | Zbl

[15] S. S. Korobkov, “Proektirovaniya periodicheskikh nilkolets”, Izv. vuzov. Matem., 1980, no. 7, 30–38 | Zbl