Relatively maximal subgroups of odd index in symmetric groups
Algebra i logika, Tome 61 (2022) no. 2, pp. 150-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{X}$ be a class of finite groups which contains a group of order $2$ and is closed under subgroups, homomorphic images, and extensions. We define the concept of an $\mathfrak{X}$-admissible diagram representing a natural number $n$. Associated with each $n$ are finitely many such diagrams, and they all can be found easily. Admissible diagrams representing a number $n$ are used to uniquely parametrize conjugacy classes of maximal $\mathfrak{X}$-subgroups of odd index in the symmetric group $\mathrm{Sym}_n$, and we define the structure of such groups. As a consequence, we obtain a complete classification of submaximal $\mathfrak{X}$-subgroups of odd index in alternating groups.
Keywords: symmetric group, subgroup of odd index, complete class, maximal $\mathfrak{X}$-subgroup, submaximal $\mathfrak{X}$-subgroup.
@article{AL_2022_61_2_a1,
     author = {A. S. Vasil'ev and D. O. Revin},
     title = {Relatively maximal subgroups of odd index in symmetric groups},
     journal = {Algebra i logika},
     pages = {150--179},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_2_a1/}
}
TY  - JOUR
AU  - A. S. Vasil'ev
AU  - D. O. Revin
TI  - Relatively maximal subgroups of odd index in symmetric groups
JO  - Algebra i logika
PY  - 2022
SP  - 150
EP  - 179
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_2_a1/
LA  - ru
ID  - AL_2022_61_2_a1
ER  - 
%0 Journal Article
%A A. S. Vasil'ev
%A D. O. Revin
%T Relatively maximal subgroups of odd index in symmetric groups
%J Algebra i logika
%D 2022
%P 150-179
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_2_a1/
%G ru
%F AL_2022_61_2_a1
A. S. Vasil'ev; D. O. Revin. Relatively maximal subgroups of odd index in symmetric groups. Algebra i logika, Tome 61 (2022) no. 2, pp. 150-179. http://geodesic.mathdoc.fr/item/AL_2022_61_2_a1/

[1] H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute”, Finite groups (Santa Cruz Conf., 1979), Proc. Symp. Pure Math., 37, Am. Math. Soc., Providence, RI, 1980, 161–173 | DOI | MR | Zbl

[2] L. Kaloujnine, “La structure des $p$-groupes de Sylow des groupes symétriques finis”, Ann. Sci. éc. Norm. Supér., III. Sér., 65:3 (1948), 239–276 | MR | Zbl

[3] M. W. Liebeck, J. Saxl, “The primitive permutation groups of odd degree”, J. Lond. Math. Soc., II. Ser., 31:2 (1985), 250–264 | DOI | MR | Zbl

[4] W. M. Kantor, “Primitive permutation groups of odd degree, and an application to finite projective planes”, J. Algebra, 106:1 (1987), 15–45 | DOI | MR | Zbl

[5] N. V. Maslova, “Klassifikatsiya maksimalnykh podgrupp nechetnogo indeksa v konechnykh gruppakh so znakoperemennym tsokolem”, Tr. In-ta matem. mekh. UrO RAN, 16, no. 3, 2010, 182–184

[6] K. Yu. Korotitskii, D. O. Revin, “Maksimalnye razreshimye podgruppy nechetnogo indeksa v simmetricheskikh gruppakh”, Algebra i logika, 59:2 (2020), 169–189 | MR | Zbl

[7] P. Hall, “Theorems like Sylow's”, Proc. Lond. Math. Soc., III. Ser., 6 (1956), 286–304 | DOI | MR | Zbl

[8] J. G. Thompson, “Hall subgroups of the symmetric groups”, J. Comb. Theory, 1:2 (1966), 271–279 | DOI | MR | Zbl

[9] C. D. H. Cooper, “Maximal $\pi$-subgroups of the symmetric groups”, Math. Z., 123 (1971), 285–289 | DOI | MR | Zbl

[10] D. O. Revin, “Submaksimalnye razreshimye podgruppy nechetnogo indeksa v znakoperemennykh gruppakh”, Sib. matem. zh., 62:2 (2021), 387–401 | Zbl

[11] W. Guo, D. O. Revin, “Pronormality and submaximal $\mathfrak{X}$-subgroups on finite groups”, Commun. Math. Stat., 6:3 (2018), 289–317 | DOI | MR | Zbl

[12] J. D. Dixon, B. Mortimer, Permutation groups, Grad. Texts Math., 163, Springer-Verlag, New York, NY, 1996 | DOI | MR | Zbl

[13] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl

[14] N. V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups: addendum”, Sib. elektron. matem. izv., 15 (2018), 707–718 http://semr.math.nsc.ru/v15/p707-718.pdf | MR | Zbl

[15] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss., 134, Nachdr. d. 1. Aufl., Springer-Verlag, Berlin a.o., 1979 | MR | Zbl