Relatively maximal subgroups of odd index in symmetric groups
Algebra i logika, Tome 61 (2022) no. 2, pp. 150-179

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{X}$ be a class of finite groups which contains a group of order $2$ and is closed under subgroups, homomorphic images, and extensions. We define the concept of an $\mathfrak{X}$-admissible diagram representing a natural number $n$. Associated with each $n$ are finitely many such diagrams, and they all can be found easily. Admissible diagrams representing a number $n$ are used to uniquely parametrize conjugacy classes of maximal $\mathfrak{X}$-subgroups of odd index in the symmetric group $\mathrm{Sym}_n$, and we define the structure of such groups. As a consequence, we obtain a complete classification of submaximal $\mathfrak{X}$-subgroups of odd index in alternating groups.
Keywords: symmetric group, subgroup of odd index, complete class, maximal $\mathfrak{X}$-subgroup, submaximal $\mathfrak{X}$-subgroup.
@article{AL_2022_61_2_a1,
     author = {A. S. Vasil'ev and D. O. Revin},
     title = {Relatively maximal subgroups of odd index in symmetric groups},
     journal = {Algebra i logika},
     pages = {150--179},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_2_a1/}
}
TY  - JOUR
AU  - A. S. Vasil'ev
AU  - D. O. Revin
TI  - Relatively maximal subgroups of odd index in symmetric groups
JO  - Algebra i logika
PY  - 2022
SP  - 150
EP  - 179
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_2_a1/
LA  - ru
ID  - AL_2022_61_2_a1
ER  - 
%0 Journal Article
%A A. S. Vasil'ev
%A D. O. Revin
%T Relatively maximal subgroups of odd index in symmetric groups
%J Algebra i logika
%D 2022
%P 150-179
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_2_a1/
%G ru
%F AL_2022_61_2_a1
A. S. Vasil'ev; D. O. Revin. Relatively maximal subgroups of odd index in symmetric groups. Algebra i logika, Tome 61 (2022) no. 2, pp. 150-179. http://geodesic.mathdoc.fr/item/AL_2022_61_2_a1/