Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2022_61_2_a1, author = {A. S. Vasil'ev and D. O. Revin}, title = {Relatively maximal subgroups of odd index in symmetric groups}, journal = {Algebra i logika}, pages = {150--179}, publisher = {mathdoc}, volume = {61}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2022_61_2_a1/} }
A. S. Vasil'ev; D. O. Revin. Relatively maximal subgroups of odd index in symmetric groups. Algebra i logika, Tome 61 (2022) no. 2, pp. 150-179. http://geodesic.mathdoc.fr/item/AL_2022_61_2_a1/
[1] H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute”, Finite groups (Santa Cruz Conf., 1979), Proc. Symp. Pure Math., 37, Am. Math. Soc., Providence, RI, 1980, 161–173 | DOI | MR | Zbl
[2] L. Kaloujnine, “La structure des $p$-groupes de Sylow des groupes symétriques finis”, Ann. Sci. éc. Norm. Supér., III. Sér., 65:3 (1948), 239–276 | MR | Zbl
[3] M. W. Liebeck, J. Saxl, “The primitive permutation groups of odd degree”, J. Lond. Math. Soc., II. Ser., 31:2 (1985), 250–264 | DOI | MR | Zbl
[4] W. M. Kantor, “Primitive permutation groups of odd degree, and an application to finite projective planes”, J. Algebra, 106:1 (1987), 15–45 | DOI | MR | Zbl
[5] N. V. Maslova, “Klassifikatsiya maksimalnykh podgrupp nechetnogo indeksa v konechnykh gruppakh so znakoperemennym tsokolem”, Tr. In-ta matem. mekh. UrO RAN, 16, no. 3, 2010, 182–184
[6] K. Yu. Korotitskii, D. O. Revin, “Maksimalnye razreshimye podgruppy nechetnogo indeksa v simmetricheskikh gruppakh”, Algebra i logika, 59:2 (2020), 169–189 | MR | Zbl
[7] P. Hall, “Theorems like Sylow's”, Proc. Lond. Math. Soc., III. Ser., 6 (1956), 286–304 | DOI | MR | Zbl
[8] J. G. Thompson, “Hall subgroups of the symmetric groups”, J. Comb. Theory, 1:2 (1966), 271–279 | DOI | MR | Zbl
[9] C. D. H. Cooper, “Maximal $\pi$-subgroups of the symmetric groups”, Math. Z., 123 (1971), 285–289 | DOI | MR | Zbl
[10] D. O. Revin, “Submaksimalnye razreshimye podgruppy nechetnogo indeksa v znakoperemennykh gruppakh”, Sib. matem. zh., 62:2 (2021), 387–401 | Zbl
[11] W. Guo, D. O. Revin, “Pronormality and submaximal $\mathfrak{X}$-subgroups on finite groups”, Commun. Math. Stat., 6:3 (2018), 289–317 | DOI | MR | Zbl
[12] J. D. Dixon, B. Mortimer, Permutation groups, Grad. Texts Math., 163, Springer-Verlag, New York, NY, 1996 | DOI | MR | Zbl
[13] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl
[14] N. V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups: addendum”, Sib. elektron. matem. izv., 15 (2018), 707–718 http://semr.math.nsc.ru/v15/p707-718.pdf | MR | Zbl
[15] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss., 134, Nachdr. d. 1. Aufl., Springer-Verlag, Berlin a.o., 1979 | MR | Zbl